基于CNN和SVM的肺孤立结节良恶性分类

Liu Lu, Y. Liu, Hongyuan Zhao
{"title":"基于CNN和SVM的肺孤立结节良恶性分类","authors":"Liu Lu, Y. Liu, Hongyuan Zhao","doi":"10.1145/3220511.3220513","DOIUrl":null,"url":null,"abstract":"In order to assist the doctors to diagnose lung cancer and improve the classification accuracy of benign and malignant pulmonary nodules, this paper proposes a novel intelligent diagnosis model which is aiming at CT imaging features of pulmonary nodules. Specifically, this model uses the convolutional neural network to extract the features of the pulmonary nodules, then uses the principal component analysis to reduce the dimension of the extracted features, and finally classifies the final features with particle swarm optimization optimized SVM. With regard to the pulmonary nodules extracted from the LIDC-IDRI database, 400 pulmonary nodules are used for training and 310 pulmonary nodules are used for testing, the classification accuracy rate is 91.94%. This model can provide objective, convenient and efficient auxiliary method for solving the classification problem of benign and malignant pulmonary nodules in medical images.","PeriodicalId":177319,"journal":{"name":"Proceedings of the International Conference on Machine Vision and Applications","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Benign and Malignant Solitary Pulmonary Nodules Classification Based on CNN and SVM\",\"authors\":\"Liu Lu, Y. Liu, Hongyuan Zhao\",\"doi\":\"10.1145/3220511.3220513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to assist the doctors to diagnose lung cancer and improve the classification accuracy of benign and malignant pulmonary nodules, this paper proposes a novel intelligent diagnosis model which is aiming at CT imaging features of pulmonary nodules. Specifically, this model uses the convolutional neural network to extract the features of the pulmonary nodules, then uses the principal component analysis to reduce the dimension of the extracted features, and finally classifies the final features with particle swarm optimization optimized SVM. With regard to the pulmonary nodules extracted from the LIDC-IDRI database, 400 pulmonary nodules are used for training and 310 pulmonary nodules are used for testing, the classification accuracy rate is 91.94%. This model can provide objective, convenient and efficient auxiliary method for solving the classification problem of benign and malignant pulmonary nodules in medical images.\",\"PeriodicalId\":177319,\"journal\":{\"name\":\"Proceedings of the International Conference on Machine Vision and Applications\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Machine Vision and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3220511.3220513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Machine Vision and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3220511.3220513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

为了辅助医生诊断肺癌,提高肺结节良恶性分类准确率,本文提出了一种针对肺结节CT影像特征的新型智能诊断模型。具体来说,该模型利用卷积神经网络提取肺结节的特征,然后利用主成分分析对提取的特征进行降维,最后利用粒子群优化的SVM对最终特征进行分类。对于从LIDC-IDRI数据库中提取的肺结节,使用400个肺结节进行训练,310个肺结节进行测试,分类准确率为91.94%。该模型可为解决医学图像中肺结节良恶性分类问题提供客观、方便、高效的辅助方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Benign and Malignant Solitary Pulmonary Nodules Classification Based on CNN and SVM
In order to assist the doctors to diagnose lung cancer and improve the classification accuracy of benign and malignant pulmonary nodules, this paper proposes a novel intelligent diagnosis model which is aiming at CT imaging features of pulmonary nodules. Specifically, this model uses the convolutional neural network to extract the features of the pulmonary nodules, then uses the principal component analysis to reduce the dimension of the extracted features, and finally classifies the final features with particle swarm optimization optimized SVM. With regard to the pulmonary nodules extracted from the LIDC-IDRI database, 400 pulmonary nodules are used for training and 310 pulmonary nodules are used for testing, the classification accuracy rate is 91.94%. This model can provide objective, convenient and efficient auxiliary method for solving the classification problem of benign and malignant pulmonary nodules in medical images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信