带髓外固定系统髋关节假体的有限元分析

M. Ebrahimkhani, Alireza Abbasi Ghiri, F. Farahmand
{"title":"带髓外固定系统髋关节假体的有限元分析","authors":"M. Ebrahimkhani, Alireza Abbasi Ghiri, F. Farahmand","doi":"10.1109/ICBME51989.2020.9319421","DOIUrl":null,"url":null,"abstract":"Hip joint prostheses generally enjoy intramedullary stems, with multitudinous designs and shapes, for fixation into the femur. There are patients, however, who are not able to use such prostheses, for instance, due to their very narrow medullary canals. This study is designed to investigate the feasibility of using an extramedullary fixation system for hip joint prostheses. The proposed design is based on Dynamic Hip Screw (DHS) which is originally used for the treatment of femoral neck fractures. A voxel-based finite element model of the femur is developed from QCT images of a cadaver. The model is validated by simulating an experimental in-vitro test which investigated the mechanical behavior of proximal femoral bone under compression loading. It is then used to assess the performance of a DHS-based extramedullary fixation system of the hip prosthesis, in comparison with that of a conventional long-stem design. Muscle and joint forces, extracted from a musculoskeletal analysis of the gait cycle, are applied to the model. The resulting stresses in the components of the two designs are analyzed to examine the possibility of their fracture. Also, the strain energy density in the periprosthetic bone is studied to investigate the long-term performance of the designs considering bone remodeling behavior. Results indicate very high stresses in the screws of the DHS-based system, larger than their endurance limit. Also, the DHS-based fixation is found to impose a large amount of stress shielding throughout the fixation site, raising the risk of bone failure or implant loosening due to bone remodeling. It is concluded that the DHS-based design, in its original configuration, might not be appropriate for hip arthroplasty. Suggestions have been given for the design of a practically successful extramedullary hip implant.","PeriodicalId":120969,"journal":{"name":"2020 27th National and 5th International Iranian Conference on Biomedical Engineering (ICBME)","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite Element Analysis of A Hip Joint Prosthesis with An Extramedullary Fixation System\",\"authors\":\"M. Ebrahimkhani, Alireza Abbasi Ghiri, F. Farahmand\",\"doi\":\"10.1109/ICBME51989.2020.9319421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hip joint prostheses generally enjoy intramedullary stems, with multitudinous designs and shapes, for fixation into the femur. There are patients, however, who are not able to use such prostheses, for instance, due to their very narrow medullary canals. This study is designed to investigate the feasibility of using an extramedullary fixation system for hip joint prostheses. The proposed design is based on Dynamic Hip Screw (DHS) which is originally used for the treatment of femoral neck fractures. A voxel-based finite element model of the femur is developed from QCT images of a cadaver. The model is validated by simulating an experimental in-vitro test which investigated the mechanical behavior of proximal femoral bone under compression loading. It is then used to assess the performance of a DHS-based extramedullary fixation system of the hip prosthesis, in comparison with that of a conventional long-stem design. Muscle and joint forces, extracted from a musculoskeletal analysis of the gait cycle, are applied to the model. The resulting stresses in the components of the two designs are analyzed to examine the possibility of their fracture. Also, the strain energy density in the periprosthetic bone is studied to investigate the long-term performance of the designs considering bone remodeling behavior. Results indicate very high stresses in the screws of the DHS-based system, larger than their endurance limit. Also, the DHS-based fixation is found to impose a large amount of stress shielding throughout the fixation site, raising the risk of bone failure or implant loosening due to bone remodeling. It is concluded that the DHS-based design, in its original configuration, might not be appropriate for hip arthroplasty. Suggestions have been given for the design of a practically successful extramedullary hip implant.\",\"PeriodicalId\":120969,\"journal\":{\"name\":\"2020 27th National and 5th International Iranian Conference on Biomedical Engineering (ICBME)\",\"volume\":\"151 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 27th National and 5th International Iranian Conference on Biomedical Engineering (ICBME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBME51989.2020.9319421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 27th National and 5th International Iranian Conference on Biomedical Engineering (ICBME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBME51989.2020.9319421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

髋关节假体通常采用髓内假体,具有多种设计和形状,用于固定到股骨内。然而,有些病人不能使用这种假体,例如,由于他们的髓管非常狭窄。本研究旨在探讨髋关节假体髓外固定系统的可行性。提出的设计基于动态髋螺钉(DHS),该螺钉最初用于治疗股骨颈骨折。基于体素的股骨有限元模型是由尸体的QCT图像开发的。通过模拟体外实验验证了该模型的有效性,该实验研究了股骨近端骨在压缩载荷下的力学行为。然后将其用于评估基于dhs的髋关节假体髓外固定系统的性能,并与传统的长柄设计进行比较。从步态周期的肌肉骨骼分析中提取的肌肉和关节力被应用到模型中。分析了两种设计的构件中产生的应力,以检查其断裂的可能性。此外,还研究了假体周围骨的应变能密度,以研究考虑骨重塑行为的设计的长期性能。结果表明,基于dhs的系统中螺钉的应力非常高,大于其承受极限。此外,研究发现基于dhs的固定在整个固定部位施加了大量的应力屏蔽,增加了骨重塑导致骨衰竭或植入物松动的风险。结论是基于dhs的设计,在其原始配置下,可能不适合髋关节置换术。为设计一个实际成功的髓外髋关节植入物提供了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite Element Analysis of A Hip Joint Prosthesis with An Extramedullary Fixation System
Hip joint prostheses generally enjoy intramedullary stems, with multitudinous designs and shapes, for fixation into the femur. There are patients, however, who are not able to use such prostheses, for instance, due to their very narrow medullary canals. This study is designed to investigate the feasibility of using an extramedullary fixation system for hip joint prostheses. The proposed design is based on Dynamic Hip Screw (DHS) which is originally used for the treatment of femoral neck fractures. A voxel-based finite element model of the femur is developed from QCT images of a cadaver. The model is validated by simulating an experimental in-vitro test which investigated the mechanical behavior of proximal femoral bone under compression loading. It is then used to assess the performance of a DHS-based extramedullary fixation system of the hip prosthesis, in comparison with that of a conventional long-stem design. Muscle and joint forces, extracted from a musculoskeletal analysis of the gait cycle, are applied to the model. The resulting stresses in the components of the two designs are analyzed to examine the possibility of their fracture. Also, the strain energy density in the periprosthetic bone is studied to investigate the long-term performance of the designs considering bone remodeling behavior. Results indicate very high stresses in the screws of the DHS-based system, larger than their endurance limit. Also, the DHS-based fixation is found to impose a large amount of stress shielding throughout the fixation site, raising the risk of bone failure or implant loosening due to bone remodeling. It is concluded that the DHS-based design, in its original configuration, might not be appropriate for hip arthroplasty. Suggestions have been given for the design of a practically successful extramedullary hip implant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信