{"title":"用长路径覆盖顶点的近似算法","authors":"Mingyang Gong, Brett Edgar, Jing Fan, Guohui Lin, Eiji Miyano","doi":"10.48550/arXiv.2208.03294","DOIUrl":null,"url":null,"abstract":"Given a graph, the general problem to cover the maximum number of vertices by a collection of vertex-disjoint long paths seemingly escapes from the literature. A path containing at least k vertices is considered long. When k ≤ 3, the problem is polynomial time solvable; when k is the total number of vertices, the problem reduces to the Hamiltonian path problem, which is NP-complete. For a fixed k ≥ 4, the problem is NP-hard and the best known approximation algorithm for the weighted set packing problem implies a k -approximation algorithm. To the best of our knowledge, there is no approximation algorithm directly designed for the general problem; when k = 4, the problem admits a 4-approximation algorithm which was presented recently. We propose the first (0 . 4394 k + O (1))-approximation algorithm for the general problem and an improved 2-approximation algorithm when k = 4. Both algorithms are based on local improvement, and their theoretical performance analyses are done via amortization and their practical performance is examined through simulation studies.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Approximation algorithms for covering vertices by long paths\",\"authors\":\"Mingyang Gong, Brett Edgar, Jing Fan, Guohui Lin, Eiji Miyano\",\"doi\":\"10.48550/arXiv.2208.03294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a graph, the general problem to cover the maximum number of vertices by a collection of vertex-disjoint long paths seemingly escapes from the literature. A path containing at least k vertices is considered long. When k ≤ 3, the problem is polynomial time solvable; when k is the total number of vertices, the problem reduces to the Hamiltonian path problem, which is NP-complete. For a fixed k ≥ 4, the problem is NP-hard and the best known approximation algorithm for the weighted set packing problem implies a k -approximation algorithm. To the best of our knowledge, there is no approximation algorithm directly designed for the general problem; when k = 4, the problem admits a 4-approximation algorithm which was presented recently. We propose the first (0 . 4394 k + O (1))-approximation algorithm for the general problem and an improved 2-approximation algorithm when k = 4. Both algorithms are based on local improvement, and their theoretical performance analyses are done via amortization and their practical performance is examined through simulation studies.\",\"PeriodicalId\":369104,\"journal\":{\"name\":\"International Symposium on Mathematical Foundations of Computer Science\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Mathematical Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2208.03294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.03294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Approximation algorithms for covering vertices by long paths
Given a graph, the general problem to cover the maximum number of vertices by a collection of vertex-disjoint long paths seemingly escapes from the literature. A path containing at least k vertices is considered long. When k ≤ 3, the problem is polynomial time solvable; when k is the total number of vertices, the problem reduces to the Hamiltonian path problem, which is NP-complete. For a fixed k ≥ 4, the problem is NP-hard and the best known approximation algorithm for the weighted set packing problem implies a k -approximation algorithm. To the best of our knowledge, there is no approximation algorithm directly designed for the general problem; when k = 4, the problem admits a 4-approximation algorithm which was presented recently. We propose the first (0 . 4394 k + O (1))-approximation algorithm for the general problem and an improved 2-approximation algorithm when k = 4. Both algorithms are based on local improvement, and their theoretical performance analyses are done via amortization and their practical performance is examined through simulation studies.