使用辅助数据边界省略变量偏差

Yu-Ning Hwang
{"title":"使用辅助数据边界省略变量偏差","authors":"Yu-Ning Hwang","doi":"10.2139/ssrn.3866876","DOIUrl":null,"url":null,"abstract":"This paper proposes a new estimator that bounds omitted variable bias using proxies for omitted variables with an asymptotically valid bootstrap procedure. The estimator is useful in many applications because it uses proxies that do not need to appear in the same dataset as the outcome variable. Many surveys include rich proxy variables for a diverse set of unobservable characteristics including abilities, beliefs, and preferences; such surveys can be used as auxiliary datasets in computing my estimator. I provide Monte Carlo simulation results that compare my estimator to the alternative estimator proposed by Pacini (2017) and to the Altonji et al. (2005) - Oster (2019) bound estimator. I show from a simulation that my estimator is robust when proxy variables are contaminated with a large amount of measurement error. I illustrate the application of my estimator in the context of a Mincerian wage regression. Last, I provide open-source software to implement the estimator and to compute the confidence interval.","PeriodicalId":139983,"journal":{"name":"Econometrics: Econometric & Statistical Methods - Special Topics eJournal","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bounding Omitted Variable Bias Using Auxiliary Data\",\"authors\":\"Yu-Ning Hwang\",\"doi\":\"10.2139/ssrn.3866876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new estimator that bounds omitted variable bias using proxies for omitted variables with an asymptotically valid bootstrap procedure. The estimator is useful in many applications because it uses proxies that do not need to appear in the same dataset as the outcome variable. Many surveys include rich proxy variables for a diverse set of unobservable characteristics including abilities, beliefs, and preferences; such surveys can be used as auxiliary datasets in computing my estimator. I provide Monte Carlo simulation results that compare my estimator to the alternative estimator proposed by Pacini (2017) and to the Altonji et al. (2005) - Oster (2019) bound estimator. I show from a simulation that my estimator is robust when proxy variables are contaminated with a large amount of measurement error. I illustrate the application of my estimator in the context of a Mincerian wage regression. Last, I provide open-source software to implement the estimator and to compute the confidence interval.\",\"PeriodicalId\":139983,\"journal\":{\"name\":\"Econometrics: Econometric & Statistical Methods - Special Topics eJournal\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics: Econometric & Statistical Methods - Special Topics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3866876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Econometric & Statistical Methods - Special Topics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3866876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文利用渐近有效的自举过程,提出了一种新的估计量,该估计量利用被省略变量的代理对被省略变量的偏差进行界。估计器在许多应用程序中都很有用,因为它使用的代理不需要出现在与结果变量相同的数据集中。许多调查包含丰富的代理变量,用于各种不可观察的特征,包括能力、信仰和偏好;这样的调查可以作为辅助数据集在计算我的估计。我提供了蒙特卡罗模拟结果,将我的估计器与Pacini(2017)提出的替代估计器以及Altonji等人(2005)- Oster(2019)界估计器进行了比较。我通过模拟表明,当代理变量受到大量测量误差的污染时,我的估计器是鲁棒的。我在Mincerian工资回归的背景下说明了我的估计器的应用。最后,我提供了开源软件来实现估计器和计算置信区间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounding Omitted Variable Bias Using Auxiliary Data
This paper proposes a new estimator that bounds omitted variable bias using proxies for omitted variables with an asymptotically valid bootstrap procedure. The estimator is useful in many applications because it uses proxies that do not need to appear in the same dataset as the outcome variable. Many surveys include rich proxy variables for a diverse set of unobservable characteristics including abilities, beliefs, and preferences; such surveys can be used as auxiliary datasets in computing my estimator. I provide Monte Carlo simulation results that compare my estimator to the alternative estimator proposed by Pacini (2017) and to the Altonji et al. (2005) - Oster (2019) bound estimator. I show from a simulation that my estimator is robust when proxy variables are contaminated with a large amount of measurement error. I illustrate the application of my estimator in the context of a Mincerian wage regression. Last, I provide open-source software to implement the estimator and to compute the confidence interval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信