基于可重构模块化模具的气动软夹持器贝叶斯优化

Tristan Sim Yook Min, Loong Yi Lee, S. Nurzaman
{"title":"基于可重构模块化模具的气动软夹持器贝叶斯优化","authors":"Tristan Sim Yook Min, Loong Yi Lee, S. Nurzaman","doi":"10.1109/RoboSoft55895.2023.10121997","DOIUrl":null,"url":null,"abstract":"Design optimization of soft grippers is critical to functionally exploit their compliance. However, it is difficult to predictably model or search the design space of even simple Fluidic Elastomer Actuators. This work presents a method to rapidly customize and identify desirable morphologies of pneumatic soft grippers via Bayesian Optimization of reconfigurable modular molds. With the goal of maximizing grasping success rate for a general object set, the reality-assisted optimization process uses results from physical pick and place experiments to iterate through a large array of design parameters. Suggested design parameters dictate the assembly of pre-fabricated modules in the mold to generate silicone-casted soft fingers. These fingers are integrated to form a gripper and tested to inform the next iteration. This process allows faster iterations compared to 3D printing equivalent grippers or molds, and discretizes the design space for faster search through parameter combinations. An improvement of 34% in average grasping success rate was achieved in six iterations, shedding light on desirable parameter configurations for the grasping task.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bayesian Optimization of Pneumatic Soft Grippers via Reconfigurable Modular Molds\",\"authors\":\"Tristan Sim Yook Min, Loong Yi Lee, S. Nurzaman\",\"doi\":\"10.1109/RoboSoft55895.2023.10121997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Design optimization of soft grippers is critical to functionally exploit their compliance. However, it is difficult to predictably model or search the design space of even simple Fluidic Elastomer Actuators. This work presents a method to rapidly customize and identify desirable morphologies of pneumatic soft grippers via Bayesian Optimization of reconfigurable modular molds. With the goal of maximizing grasping success rate for a general object set, the reality-assisted optimization process uses results from physical pick and place experiments to iterate through a large array of design parameters. Suggested design parameters dictate the assembly of pre-fabricated modules in the mold to generate silicone-casted soft fingers. These fingers are integrated to form a gripper and tested to inform the next iteration. This process allows faster iterations compared to 3D printing equivalent grippers or molds, and discretizes the design space for faster search through parameter combinations. An improvement of 34% in average grasping success rate was achieved in six iterations, shedding light on desirable parameter configurations for the grasping task.\",\"PeriodicalId\":250981,\"journal\":{\"name\":\"2023 IEEE International Conference on Soft Robotics (RoboSoft)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Soft Robotics (RoboSoft)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RoboSoft55895.2023.10121997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RoboSoft55895.2023.10121997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

软夹持器的设计优化是充分利用其顺应性的关键。然而,即使是简单的流体弹性体作动器,也很难预测建模或搜索设计空间。本文提出了一种通过可重构模块化模具的贝叶斯优化快速定制和识别理想气动软夹持器形态的方法。为了最大限度地提高一般对象集的抓取成功率,现实辅助优化过程使用物理取放实验的结果来迭代大量的设计参数。建议的设计参数决定了预制模块在模具中的组装,以产生硅铸造的柔软手指。这些手指被整合成一个抓手,并经过测试以通知下一次迭代。与3D打印等效夹具或模具相比,该过程允许更快的迭代,并使设计空间离散,以便通过参数组合更快地搜索。在六次迭代中,平均抓取成功率提高了34%,揭示了抓取任务所需的参数配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Optimization of Pneumatic Soft Grippers via Reconfigurable Modular Molds
Design optimization of soft grippers is critical to functionally exploit their compliance. However, it is difficult to predictably model or search the design space of even simple Fluidic Elastomer Actuators. This work presents a method to rapidly customize and identify desirable morphologies of pneumatic soft grippers via Bayesian Optimization of reconfigurable modular molds. With the goal of maximizing grasping success rate for a general object set, the reality-assisted optimization process uses results from physical pick and place experiments to iterate through a large array of design parameters. Suggested design parameters dictate the assembly of pre-fabricated modules in the mold to generate silicone-casted soft fingers. These fingers are integrated to form a gripper and tested to inform the next iteration. This process allows faster iterations compared to 3D printing equivalent grippers or molds, and discretizes the design space for faster search through parameter combinations. An improvement of 34% in average grasping success rate was achieved in six iterations, shedding light on desirable parameter configurations for the grasping task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信