Baracca:汽车人体测量的多模态数据集

S. Pini, Andrea D'Eusanio, G. Borghi, R. Vezzani, R. Cucchiara
{"title":"Baracca:汽车人体测量的多模态数据集","authors":"S. Pini, Andrea D'Eusanio, G. Borghi, R. Vezzani, R. Cucchiara","doi":"10.1109/IJCB48548.2020.9304903","DOIUrl":null,"url":null,"abstract":"The recent spread of depth sensors has enabled new methods to automatically estimate anthropometric measurements, in place of manual procedures or expensive 3D scanners. Generally, the use of depth data is limited by the lack of depth-based public datasets containing accurate anthropometric annotations. Therefore, in this paper we propose a new dataset, called Baracca, specifically designed for the automotive context, including in-car and outside views. The dataset is multimodal: it has been acquired with synchronized depth, infrared, thermal and RGB cameras in order to deal with the requirements imposed by the automotive context. In addition, we propose several baselines to test the challenges of the presented dataset and provide considerations for future work.","PeriodicalId":417270,"journal":{"name":"2020 IEEE International Joint Conference on Biometrics (IJCB)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Baracca: a Multimodal Dataset for Anthropometric Measurements in Automotive\",\"authors\":\"S. Pini, Andrea D'Eusanio, G. Borghi, R. Vezzani, R. Cucchiara\",\"doi\":\"10.1109/IJCB48548.2020.9304903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent spread of depth sensors has enabled new methods to automatically estimate anthropometric measurements, in place of manual procedures or expensive 3D scanners. Generally, the use of depth data is limited by the lack of depth-based public datasets containing accurate anthropometric annotations. Therefore, in this paper we propose a new dataset, called Baracca, specifically designed for the automotive context, including in-car and outside views. The dataset is multimodal: it has been acquired with synchronized depth, infrared, thermal and RGB cameras in order to deal with the requirements imposed by the automotive context. In addition, we propose several baselines to test the challenges of the presented dataset and provide considerations for future work.\",\"PeriodicalId\":417270,\"journal\":{\"name\":\"2020 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCB48548.2020.9304903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB48548.2020.9304903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

最近深度传感器的普及使得自动估算人体测量值的新方法成为可能,取代了人工程序或昂贵的3D扫描仪。通常,深度数据的使用受到缺乏包含精确人体测量注释的基于深度的公共数据集的限制。因此,在本文中,我们提出了一个名为Baracca的新数据集,专门为汽车环境设计,包括车内和外部视图。数据集是多模态的:它是通过同步深度、红外、热成像和RGB相机获得的,以满足汽车环境的要求。此外,我们提出了几个基线来测试所提出的数据集的挑战,并为未来的工作提供考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Baracca: a Multimodal Dataset for Anthropometric Measurements in Automotive
The recent spread of depth sensors has enabled new methods to automatically estimate anthropometric measurements, in place of manual procedures or expensive 3D scanners. Generally, the use of depth data is limited by the lack of depth-based public datasets containing accurate anthropometric annotations. Therefore, in this paper we propose a new dataset, called Baracca, specifically designed for the automotive context, including in-car and outside views. The dataset is multimodal: it has been acquired with synchronized depth, infrared, thermal and RGB cameras in order to deal with the requirements imposed by the automotive context. In addition, we propose several baselines to test the challenges of the presented dataset and provide considerations for future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信