A. Siddiqui, A. Ahmed, A. Saleem, Zeshan Khan Alvi, T. Alam, Rizwan Qureshi
{"title":"基于注意力的生成对抗网络Covid-19检测","authors":"A. Siddiqui, A. Ahmed, A. Saleem, Zeshan Khan Alvi, T. Alam, Rizwan Qureshi","doi":"10.1109/ICCIS54243.2021.9676189","DOIUrl":null,"url":null,"abstract":"The novel Coronavirus Disease 2019 (nCOVID-19) pandemic is a global health challenge, that requires collaborative efforts from multiple research communities. Effective screening of infected patients is a significant step in the fight against COVID-19, as radiological examination being an important screening methods. Early findings reveal that anomalies in chest X-rays of COVID-19 patients exist. As a result, a number of deep learning methods have been developed, and studies have shown that the accuracy of COVID-19 patient recognition using chest X-rays is very high. In this paper, we propose an attention based deep neural network for classifying the COVID-19 images, and extracting useful clinical information. Generative adversarial network is used to generate the synthetic COVID-19 images, as well as a good latent representation of both COVID-19 and normal images. Experiment results on public datasets shows the effectiveness of the proposed approach.","PeriodicalId":165673,"journal":{"name":"2021 4th International Conference on Computing & Information Sciences (ICCIS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Attention based Covid-19 Detection using Generative Adversarial Network\",\"authors\":\"A. Siddiqui, A. Ahmed, A. Saleem, Zeshan Khan Alvi, T. Alam, Rizwan Qureshi\",\"doi\":\"10.1109/ICCIS54243.2021.9676189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The novel Coronavirus Disease 2019 (nCOVID-19) pandemic is a global health challenge, that requires collaborative efforts from multiple research communities. Effective screening of infected patients is a significant step in the fight against COVID-19, as radiological examination being an important screening methods. Early findings reveal that anomalies in chest X-rays of COVID-19 patients exist. As a result, a number of deep learning methods have been developed, and studies have shown that the accuracy of COVID-19 patient recognition using chest X-rays is very high. In this paper, we propose an attention based deep neural network for classifying the COVID-19 images, and extracting useful clinical information. Generative adversarial network is used to generate the synthetic COVID-19 images, as well as a good latent representation of both COVID-19 and normal images. Experiment results on public datasets shows the effectiveness of the proposed approach.\",\"PeriodicalId\":165673,\"journal\":{\"name\":\"2021 4th International Conference on Computing & Information Sciences (ICCIS)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 4th International Conference on Computing & Information Sciences (ICCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIS54243.2021.9676189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference on Computing & Information Sciences (ICCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS54243.2021.9676189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Attention based Covid-19 Detection using Generative Adversarial Network
The novel Coronavirus Disease 2019 (nCOVID-19) pandemic is a global health challenge, that requires collaborative efforts from multiple research communities. Effective screening of infected patients is a significant step in the fight against COVID-19, as radiological examination being an important screening methods. Early findings reveal that anomalies in chest X-rays of COVID-19 patients exist. As a result, a number of deep learning methods have been developed, and studies have shown that the accuracy of COVID-19 patient recognition using chest X-rays is very high. In this paper, we propose an attention based deep neural network for classifying the COVID-19 images, and extracting useful clinical information. Generative adversarial network is used to generate the synthetic COVID-19 images, as well as a good latent representation of both COVID-19 and normal images. Experiment results on public datasets shows the effectiveness of the proposed approach.