非线性非最小相位系统的神经网络输出反馈镇定

S. M. Hoseini, M. Farrokhi
{"title":"非线性非最小相位系统的神经网络输出反馈镇定","authors":"S. M. Hoseini, M. Farrokhi","doi":"10.1109/ISMA.2008.4648866","DOIUrl":null,"url":null,"abstract":"This paper presents an adaptive output-feedback stabilization method for non-affine nonlinear non-minimum phase systems using neural networks. The proposed controller is comprised of a linear, a neuro-adaptive, and an adaptive robustifying control term. The learning rules for adaptive gains, including weights of the neural network, are derived using the Lyapunovpsilas direct method. These adaptation laws employ a suitable output of a linear observer of system dynamics that is realizable. The effectiveness of the proposed scheme will be shown in simulations for the benchmark translation oscillator rotational actuator (TORA) problem.","PeriodicalId":350202,"journal":{"name":"2008 5th International Symposium on Mechatronics and Its Applications","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Output-feedback stabilization of nonlinear non-minimum phase systems using neural network\",\"authors\":\"S. M. Hoseini, M. Farrokhi\",\"doi\":\"10.1109/ISMA.2008.4648866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an adaptive output-feedback stabilization method for non-affine nonlinear non-minimum phase systems using neural networks. The proposed controller is comprised of a linear, a neuro-adaptive, and an adaptive robustifying control term. The learning rules for adaptive gains, including weights of the neural network, are derived using the Lyapunovpsilas direct method. These adaptation laws employ a suitable output of a linear observer of system dynamics that is realizable. The effectiveness of the proposed scheme will be shown in simulations for the benchmark translation oscillator rotational actuator (TORA) problem.\",\"PeriodicalId\":350202,\"journal\":{\"name\":\"2008 5th International Symposium on Mechatronics and Its Applications\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th International Symposium on Mechatronics and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMA.2008.4648866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th International Symposium on Mechatronics and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMA.2008.4648866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于神经网络的非仿射非线性非最小相位系统的自适应输出反馈镇定方法。该控制器由线性鲁棒控制项、神经自适应鲁棒控制项和自适应鲁棒控制项组成。采用Lyapunovpsilas直接法推导了自适应增益的学习规则,包括神经网络的权值。这些自适应律采用可实现的系统动力学线性观测器的适当输出。该方法的有效性将在基准平移振荡器旋转执行器(TORA)问题的仿真中得到验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Output-feedback stabilization of nonlinear non-minimum phase systems using neural network
This paper presents an adaptive output-feedback stabilization method for non-affine nonlinear non-minimum phase systems using neural networks. The proposed controller is comprised of a linear, a neuro-adaptive, and an adaptive robustifying control term. The learning rules for adaptive gains, including weights of the neural network, are derived using the Lyapunovpsilas direct method. These adaptation laws employ a suitable output of a linear observer of system dynamics that is realizable. The effectiveness of the proposed scheme will be shown in simulations for the benchmark translation oscillator rotational actuator (TORA) problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信