以生物为灵感的模型来描述YouTube的浏览量

Cédric Richier, E. Altman, R. E. Azouzi, T. Jiménez, G. Linarès, Y. Portilla
{"title":"以生物为灵感的模型来描述YouTube的浏览量","authors":"Cédric Richier, E. Altman, R. E. Azouzi, T. Jiménez, G. Linarès, Y. Portilla","doi":"10.1109/ASONAM.2014.6921600","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to study the behaviour of viewcount in YouTube. We first propose several bio-inspired models for the evolution of the viewcount of YouTube videos. We show, using a large set of empirical data, that the viewcount for 90% of videos in YouTube can indeed be associated to at least one of these models, with a Mean Error which does not exceed 5%. We derive automatic ways of classifying the viewcount curve into one of these models and of extracting the most suitable parameters of the model. We study empirically the impact of videos' popularity and category on the evolution of its viewcount. We finally use the above classification along with the automatic parameters extraction in order to predict the evolution of videos' viewcount.","PeriodicalId":143584,"journal":{"name":"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Bio-inspired models for characterizing YouTube viewcout\",\"authors\":\"Cédric Richier, E. Altman, R. E. Azouzi, T. Jiménez, G. Linarès, Y. Portilla\",\"doi\":\"10.1109/ASONAM.2014.6921600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this paper is to study the behaviour of viewcount in YouTube. We first propose several bio-inspired models for the evolution of the viewcount of YouTube videos. We show, using a large set of empirical data, that the viewcount for 90% of videos in YouTube can indeed be associated to at least one of these models, with a Mean Error which does not exceed 5%. We derive automatic ways of classifying the viewcount curve into one of these models and of extracting the most suitable parameters of the model. We study empirically the impact of videos' popularity and category on the evolution of its viewcount. We finally use the above classification along with the automatic parameters extraction in order to predict the evolution of videos' viewcount.\",\"PeriodicalId\":143584,\"journal\":{\"name\":\"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)\",\"volume\":\"127 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASONAM.2014.6921600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM.2014.6921600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

本文的目的是研究YouTube中观看次数的行为。我们首先提出了几个受生物启发的YouTube视频观看数演变模型。我们使用大量的经验数据表明,YouTube上90%的视频的观看次数确实可以与这些模型中的至少一个相关联,平均误差不超过5%。我们推导了将视计数曲线自动分类为这些模型之一的方法,并提取了模型中最合适的参数。实证研究了视频的受欢迎程度和类别对视频浏览量演变的影响。最后,我们使用上述分类和自动参数提取来预测视频观看数的演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bio-inspired models for characterizing YouTube viewcout
The goal of this paper is to study the behaviour of viewcount in YouTube. We first propose several bio-inspired models for the evolution of the viewcount of YouTube videos. We show, using a large set of empirical data, that the viewcount for 90% of videos in YouTube can indeed be associated to at least one of these models, with a Mean Error which does not exceed 5%. We derive automatic ways of classifying the viewcount curve into one of these models and of extracting the most suitable parameters of the model. We study empirically the impact of videos' popularity and category on the evolution of its viewcount. We finally use the above classification along with the automatic parameters extraction in order to predict the evolution of videos' viewcount.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信