独特的完美搭配和防网

L. T. D. Nguyên
{"title":"独特的完美搭配和防网","authors":"L. T. D. Nguyên","doi":"10.4230/LIPIcs.FSCD.2018.25","DOIUrl":null,"url":null,"abstract":"This paper establishes a bridge between linear logic and mainstream graph theory, building previous work by Retore (2003). We show that the problem of correctness for MLL+Mix proof nets is equivalent to the problem of uniqueness of a perfect matching. By applying matching theory, we obtain new results for MLL+Mix proof nets: a linear-time correctness criterion, a quasi-linear sequentialization algorithm, and a characterization of the sub-polynomial complexity of the correctness problem. We also use graph algorithms to compute the dependency relation of Bagnol et al. (2015) and the kingdom ordering of Bellin (1997), and relate them to the notion of blossom which is central to combinatorial maximum matching algorithms.","PeriodicalId":284975,"journal":{"name":"International Conference on Formal Structures for Computation and Deduction","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Unique perfect matchings and proof nets\",\"authors\":\"L. T. D. Nguyên\",\"doi\":\"10.4230/LIPIcs.FSCD.2018.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper establishes a bridge between linear logic and mainstream graph theory, building previous work by Retore (2003). We show that the problem of correctness for MLL+Mix proof nets is equivalent to the problem of uniqueness of a perfect matching. By applying matching theory, we obtain new results for MLL+Mix proof nets: a linear-time correctness criterion, a quasi-linear sequentialization algorithm, and a characterization of the sub-polynomial complexity of the correctness problem. We also use graph algorithms to compute the dependency relation of Bagnol et al. (2015) and the kingdom ordering of Bellin (1997), and relate them to the notion of blossom which is central to combinatorial maximum matching algorithms.\",\"PeriodicalId\":284975,\"journal\":{\"name\":\"International Conference on Formal Structures for Computation and Deduction\",\"volume\":\"151 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Formal Structures for Computation and Deduction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.FSCD.2018.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Formal Structures for Computation and Deduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FSCD.2018.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文在Retore(2003)之前的工作的基础上,建立了线性逻辑和主流图论之间的桥梁。证明了MLL+Mix证明网的正确性问题等价于一个完美匹配的唯一性问题。应用匹配理论,得到了MLL+Mix证明网的线性时间正确性判据、拟线性序列化算法和正确性问题的次多项式复杂度表征。我们还使用图算法来计算Bagnol等人(2015)的依赖关系和Bellin(1997)的王国排序,并将它们与开花的概念联系起来,这是组合最大匹配算法的核心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unique perfect matchings and proof nets
This paper establishes a bridge between linear logic and mainstream graph theory, building previous work by Retore (2003). We show that the problem of correctness for MLL+Mix proof nets is equivalent to the problem of uniqueness of a perfect matching. By applying matching theory, we obtain new results for MLL+Mix proof nets: a linear-time correctness criterion, a quasi-linear sequentialization algorithm, and a characterization of the sub-polynomial complexity of the correctness problem. We also use graph algorithms to compute the dependency relation of Bagnol et al. (2015) and the kingdom ordering of Bellin (1997), and relate them to the notion of blossom which is central to combinatorial maximum matching algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信