多目标状态空间模型与自组织映射分层组合的不确定视觉目标跟踪

N. Ikoma
{"title":"多目标状态空间模型与自组织映射分层组合的不确定视觉目标跟踪","authors":"N. Ikoma","doi":"10.23919/fusion43075.2019.9011332","DOIUrl":null,"url":null,"abstract":"A novel visual target tracking method, where targets to be tracked are uncertain as they are not pre-determined, has been proposed in a framework of multiple target tracking formulation with Random Finite Set (RFS) and Probability Hypothesis Density (PHD) filter with its Sequential Monte Carlo (SMC) implementation. Self Organizing Map (SOM) and its learning algorithm have been combined to the framework as a post-process of the state estimation by SMC-PHD filter in order to classify the unlabelled set of particles, i.e. state estimation result, into structured knowledge of the scene. Synthetic and real video image experiments demonstrate preliminary results of the proposed method.","PeriodicalId":348881,"journal":{"name":"2019 22th International Conference on Information Fusion (FUSION)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertain Visual Target Tracking by Hierarchical Combination of Multiple Target State Space Model and Self Organizing Map\",\"authors\":\"N. Ikoma\",\"doi\":\"10.23919/fusion43075.2019.9011332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel visual target tracking method, where targets to be tracked are uncertain as they are not pre-determined, has been proposed in a framework of multiple target tracking formulation with Random Finite Set (RFS) and Probability Hypothesis Density (PHD) filter with its Sequential Monte Carlo (SMC) implementation. Self Organizing Map (SOM) and its learning algorithm have been combined to the framework as a post-process of the state estimation by SMC-PHD filter in order to classify the unlabelled set of particles, i.e. state estimation result, into structured knowledge of the scene. Synthetic and real video image experiments demonstrate preliminary results of the proposed method.\",\"PeriodicalId\":348881,\"journal\":{\"name\":\"2019 22th International Conference on Information Fusion (FUSION)\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 22th International Conference on Information Fusion (FUSION)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/fusion43075.2019.9011332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion43075.2019.9011332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在随机有限集(RFS)和概率假设密度(PHD)滤波器的多目标跟踪公式框架下,提出了一种新的视觉目标跟踪方法,该方法利用随机有限集(RFS)和概率假设密度(PHD)滤波器及其顺序蒙特卡罗(SMC)实现来实现被跟踪目标的不确定性。将自组织映射(SOM)及其学习算法作为SMC-PHD滤波状态估计的后处理结合到框架中,将未标记的粒子集即状态估计结果分类为场景的结构化知识。合成和真实视频图像实验验证了该方法的初步效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncertain Visual Target Tracking by Hierarchical Combination of Multiple Target State Space Model and Self Organizing Map
A novel visual target tracking method, where targets to be tracked are uncertain as they are not pre-determined, has been proposed in a framework of multiple target tracking formulation with Random Finite Set (RFS) and Probability Hypothesis Density (PHD) filter with its Sequential Monte Carlo (SMC) implementation. Self Organizing Map (SOM) and its learning algorithm have been combined to the framework as a post-process of the state estimation by SMC-PHD filter in order to classify the unlabelled set of particles, i.e. state estimation result, into structured knowledge of the scene. Synthetic and real video image experiments demonstrate preliminary results of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信