多尺度加速粒子滤波方法

Y. Shmueli, G. Shabat, A. Bermanis, A. Averbuch
{"title":"多尺度加速粒子滤波方法","authors":"Y. Shmueli, G. Shabat, A. Bermanis, A. Averbuch","doi":"10.1109/EEEI.2012.6377009","DOIUrl":null,"url":null,"abstract":"We present a method that accelerates the Particle Filter computation. Particle Filter is a powerful method for tracking the state of a target based on non-linear observations. Unlike the conventional way of calculating weights over all particles in each run, we sample a small subset of the particles using matrix decomposition methods, followed by a novel function extension algorithm to recover the density function of all particles. This significantly reduces the computational load where the measurement computation is substantial, as often happens, for example, when tracking targets in videos. We demonstrate our method on both simulated data and real data (videos).","PeriodicalId":177385,"journal":{"name":"2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel","volume":"51 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Accelerating Particle filter using multiscale methods\",\"authors\":\"Y. Shmueli, G. Shabat, A. Bermanis, A. Averbuch\",\"doi\":\"10.1109/EEEI.2012.6377009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method that accelerates the Particle Filter computation. Particle Filter is a powerful method for tracking the state of a target based on non-linear observations. Unlike the conventional way of calculating weights over all particles in each run, we sample a small subset of the particles using matrix decomposition methods, followed by a novel function extension algorithm to recover the density function of all particles. This significantly reduces the computational load where the measurement computation is substantial, as often happens, for example, when tracking targets in videos. We demonstrate our method on both simulated data and real data (videos).\",\"PeriodicalId\":177385,\"journal\":{\"name\":\"2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel\",\"volume\":\"51 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EEEI.2012.6377009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEEI.2012.6377009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种加速粒子滤波计算的方法。粒子滤波是一种基于非线性观测来跟踪目标状态的有效方法。与每次运行中计算所有粒子权重的传统方法不同,我们使用矩阵分解方法对一小部分粒子进行采样,然后使用一种新颖的函数扩展算法来恢复所有粒子的密度函数。这大大减少了测量计算量很大的地方的计算负荷,例如在跟踪视频中的目标时经常发生的情况。我们在模拟数据和真实数据(视频)上演示了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerating Particle filter using multiscale methods
We present a method that accelerates the Particle Filter computation. Particle Filter is a powerful method for tracking the state of a target based on non-linear observations. Unlike the conventional way of calculating weights over all particles in each run, we sample a small subset of the particles using matrix decomposition methods, followed by a novel function extension algorithm to recover the density function of all particles. This significantly reduces the computational load where the measurement computation is substantial, as often happens, for example, when tracking targets in videos. We demonstrate our method on both simulated data and real data (videos).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信