V. Kostakos, Denzil Ferreira, Jorge Gonçalves, S. Hosio
{"title":"智能手机使用建模:马尔科夫状态转换模型","authors":"V. Kostakos, Denzil Ferreira, Jorge Gonçalves, S. Hosio","doi":"10.1145/2971648.2971669","DOIUrl":null,"url":null,"abstract":"We develop a Markov state transition model of smartphone screen use. We collected use traces from real-world users during a 3-month naturalistic deployment via an app-store. These traces were used to develop an analytical model which can be used to probabilistically model or predict, at runtime, how a user interacts with their mobile phone, and for how long. Unlike classification-driven machine learning approaches, our analytical model can be interrogated under unlimited conditions, making it suitable for a wide range of applications including more realistic automated testing and improving operating system management of resources.","PeriodicalId":303792,"journal":{"name":"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing","volume":"421 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Modelling smartphone usage: a markov state transition model\",\"authors\":\"V. Kostakos, Denzil Ferreira, Jorge Gonçalves, S. Hosio\",\"doi\":\"10.1145/2971648.2971669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a Markov state transition model of smartphone screen use. We collected use traces from real-world users during a 3-month naturalistic deployment via an app-store. These traces were used to develop an analytical model which can be used to probabilistically model or predict, at runtime, how a user interacts with their mobile phone, and for how long. Unlike classification-driven machine learning approaches, our analytical model can be interrogated under unlimited conditions, making it suitable for a wide range of applications including more realistic automated testing and improving operating system management of resources.\",\"PeriodicalId\":303792,\"journal\":{\"name\":\"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing\",\"volume\":\"421 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2971648.2971669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2971648.2971669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modelling smartphone usage: a markov state transition model
We develop a Markov state transition model of smartphone screen use. We collected use traces from real-world users during a 3-month naturalistic deployment via an app-store. These traces were used to develop an analytical model which can be used to probabilistically model or predict, at runtime, how a user interacts with their mobile phone, and for how long. Unlike classification-driven machine learning approaches, our analytical model can be interrogated under unlimited conditions, making it suitable for a wide range of applications including more realistic automated testing and improving operating system management of resources.