分布式查询处理中的容错

Jim Smith, P. Watson
{"title":"分布式查询处理中的容错","authors":"Jim Smith, P. Watson","doi":"10.1109/IDEAS.2005.29","DOIUrl":null,"url":null,"abstract":"Fault-tolerance has long been a feature of database systems, with transactions supporting the structuring of applications so as to ensure continuation of updating applications in spite of machine failures. For read-only queries the perceived wisdom has been that support for fault-tolerance is too expensive to be worthwhile. Distributed query processing is coming to be seen as a promising way of implementing applications that combine structured data and analysis operations in dynamic distributed settings such as computational grids. Such a query may be long-running and having to redo the whole query after a failure may cause problems (e.g. if the result may trigger business or safety critical activities). This work describes and evaluates a new scheme for adding fault-tolerance to distributed query processing through a rollback-recovery mechanism. The high level expression of user requests in a physical algebra offers opportunities for tuning the fault-tolerance provision so as to reduce the cost, and give better performance than employment of generic fault-tolerance mechanisms at the lowest level of query processing. This paper outlines how the publicly-available OGSA-DQP computational grid-based distributed query processing system can be modified to include support for fault-tolerance and presents a performance evaluation which includes measurements of the cost of both protocol overheads and rollback-recovery, for a set of example distributed queries.","PeriodicalId":357591,"journal":{"name":"9th International Database Engineering & Application Symposium (IDEAS'05)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Fault-tolerance in distributed query processing\",\"authors\":\"Jim Smith, P. Watson\",\"doi\":\"10.1109/IDEAS.2005.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault-tolerance has long been a feature of database systems, with transactions supporting the structuring of applications so as to ensure continuation of updating applications in spite of machine failures. For read-only queries the perceived wisdom has been that support for fault-tolerance is too expensive to be worthwhile. Distributed query processing is coming to be seen as a promising way of implementing applications that combine structured data and analysis operations in dynamic distributed settings such as computational grids. Such a query may be long-running and having to redo the whole query after a failure may cause problems (e.g. if the result may trigger business or safety critical activities). This work describes and evaluates a new scheme for adding fault-tolerance to distributed query processing through a rollback-recovery mechanism. The high level expression of user requests in a physical algebra offers opportunities for tuning the fault-tolerance provision so as to reduce the cost, and give better performance than employment of generic fault-tolerance mechanisms at the lowest level of query processing. This paper outlines how the publicly-available OGSA-DQP computational grid-based distributed query processing system can be modified to include support for fault-tolerance and presents a performance evaluation which includes measurements of the cost of both protocol overheads and rollback-recovery, for a set of example distributed queries.\",\"PeriodicalId\":357591,\"journal\":{\"name\":\"9th International Database Engineering & Application Symposium (IDEAS'05)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"9th International Database Engineering & Application Symposium (IDEAS'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDEAS.2005.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"9th International Database Engineering & Application Symposium (IDEAS'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDEAS.2005.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

容错一直是数据库系统的一个特性,事务支持应用程序的结构,以确保在机器出现故障的情况下继续更新应用程序。对于只读查询,人们普遍认为支持容错的成本太高,不值得。分布式查询处理被视为一种很有前途的实现应用程序的方式,这种应用程序在动态分布式设置(如计算网格)中结合了结构化数据和分析操作。这样的查询可能是长时间运行的,并且必须在失败后重做整个查询可能会导致问题(例如,如果结果可能触发业务或安全关键活动)。本工作描述并评估了一种通过回滚恢复机制向分布式查询处理添加容错的新方案。用户请求在物理代数中的高级表达为调优容错提供了机会,从而降低了成本,并在查询处理的最低级别提供了比使用通用容错机制更好的性能。本文概述了如何修改公开可用的基于计算网格的OGSA-DQP分布式查询处理系统以支持容错,并给出了一个性能评估,其中包括对一组示例分布式查询的协议开销和回滚恢复成本的测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault-tolerance in distributed query processing
Fault-tolerance has long been a feature of database systems, with transactions supporting the structuring of applications so as to ensure continuation of updating applications in spite of machine failures. For read-only queries the perceived wisdom has been that support for fault-tolerance is too expensive to be worthwhile. Distributed query processing is coming to be seen as a promising way of implementing applications that combine structured data and analysis operations in dynamic distributed settings such as computational grids. Such a query may be long-running and having to redo the whole query after a failure may cause problems (e.g. if the result may trigger business or safety critical activities). This work describes and evaluates a new scheme for adding fault-tolerance to distributed query processing through a rollback-recovery mechanism. The high level expression of user requests in a physical algebra offers opportunities for tuning the fault-tolerance provision so as to reduce the cost, and give better performance than employment of generic fault-tolerance mechanisms at the lowest level of query processing. This paper outlines how the publicly-available OGSA-DQP computational grid-based distributed query processing system can be modified to include support for fault-tolerance and presents a performance evaluation which includes measurements of the cost of both protocol overheads and rollback-recovery, for a set of example distributed queries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信