MS-VACSNet:遥感图像中多尺度火山灰云分割网络

G. Swetha, Rajeshreddy Datla, Vishnu Chalavadi, K. C.
{"title":"MS-VACSNet:遥感图像中多尺度火山灰云分割网络","authors":"G. Swetha, Rajeshreddy Datla, Vishnu Chalavadi, K. C.","doi":"10.23919/MVA57639.2023.10215928","DOIUrl":null,"url":null,"abstract":"The segmentation of volcanic ash clouds in remote sensing images provides valuable insights to study the volcanic deformation, forecasting, tracking, and hazard monitoring. However, the task of delineating the boundary of volcanic eruptions becomes difficult due to non-uniformity in the scale of eruptions across remote sensing images. In this paper, we propose a network for multi-scale volcanic ash clouds segmentation (MS-VACSNet) in remote sensing images. The proposed MS-VACSNet uses U-Net as base line with few improvements in the encoder and decoder sub-networks. Specifically, we employ dilated convolutions to capture the contextual information while delineating volcanic eruptions of different scales. We have conducted experiments on 10 active volcanic regions across the globe using MODIS thermal and infrared images. The experimental results show that our MS-VACSNet achieves an improvement of 5% in dice score compared to state-of-the-art segmentation approaches in segmenting the volcanic ash clouds.","PeriodicalId":338734,"journal":{"name":"2023 18th International Conference on Machine Vision and Applications (MVA)","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MS-VACSNet: A Network for Multi-scale Volcanic Ash Cloud Segmentation in Remote Sensing Images\",\"authors\":\"G. Swetha, Rajeshreddy Datla, Vishnu Chalavadi, K. C.\",\"doi\":\"10.23919/MVA57639.2023.10215928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The segmentation of volcanic ash clouds in remote sensing images provides valuable insights to study the volcanic deformation, forecasting, tracking, and hazard monitoring. However, the task of delineating the boundary of volcanic eruptions becomes difficult due to non-uniformity in the scale of eruptions across remote sensing images. In this paper, we propose a network for multi-scale volcanic ash clouds segmentation (MS-VACSNet) in remote sensing images. The proposed MS-VACSNet uses U-Net as base line with few improvements in the encoder and decoder sub-networks. Specifically, we employ dilated convolutions to capture the contextual information while delineating volcanic eruptions of different scales. We have conducted experiments on 10 active volcanic regions across the globe using MODIS thermal and infrared images. The experimental results show that our MS-VACSNet achieves an improvement of 5% in dice score compared to state-of-the-art segmentation approaches in segmenting the volcanic ash clouds.\",\"PeriodicalId\":338734,\"journal\":{\"name\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"volume\":\"162 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MVA57639.2023.10215928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA57639.2023.10215928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

遥感影像中火山灰云的分割为火山形变研究、预测、跟踪和灾害监测提供了有价值的信息。然而,由于遥感影像中火山喷发规模的不均匀性,给火山喷发边界的划定带来了困难。本文提出了一种遥感影像多尺度火山灰云分割网络(MS-VACSNet)。所提出的MS-VACSNet以U-Net为基准,在编码器和解码器子网络上进行了少量改进。具体来说,我们在描述不同规模的火山爆发时使用了扩展卷积来捕获上下文信息。我们利用MODIS热、红外影像对全球10个活火山区域进行了实验。实验结果表明,我们的MS-VACSNet在分割火山灰云时,比目前最先进的分割方法在骰子得分上提高了5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MS-VACSNet: A Network for Multi-scale Volcanic Ash Cloud Segmentation in Remote Sensing Images
The segmentation of volcanic ash clouds in remote sensing images provides valuable insights to study the volcanic deformation, forecasting, tracking, and hazard monitoring. However, the task of delineating the boundary of volcanic eruptions becomes difficult due to non-uniformity in the scale of eruptions across remote sensing images. In this paper, we propose a network for multi-scale volcanic ash clouds segmentation (MS-VACSNet) in remote sensing images. The proposed MS-VACSNet uses U-Net as base line with few improvements in the encoder and decoder sub-networks. Specifically, we employ dilated convolutions to capture the contextual information while delineating volcanic eruptions of different scales. We have conducted experiments on 10 active volcanic regions across the globe using MODIS thermal and infrared images. The experimental results show that our MS-VACSNet achieves an improvement of 5% in dice score compared to state-of-the-art segmentation approaches in segmenting the volcanic ash clouds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信