D. Vamvuka, Katerina Esser, D. Marinakis, George Kalantzakis
{"title":"工业废弃物热解产物作为生物能源和生物燃料潜在原料的评价","authors":"D. Vamvuka, Katerina Esser, D. Marinakis, George Kalantzakis","doi":"10.21926/aeer.2301005","DOIUrl":null,"url":null,"abstract":"This work aimed at evaluating all products from the low-temperature pyrolysis (350°C) of some industrial wastes, cotton stems and seeds (CSS), grape husks and curls (GRH), undigested sewage sludge (USS) and their blends in a fixed bed system and suggesting their possible applications. Solid and liquid products, biochars, and bio-oils were analyzed using various techniques by physicochemical, mineralogical, and chemical analyses. Gases were qualitatively and quantitatively analyzed using a thermogravimetric-mass spectrometry system. All biochar samples could be used for soil amendment. Co-application with composts or other by-products to soils could be more advantageous. USS and its blends with CSS or GRH at percentages 20% and 30% presented an increased potential for carbon sequestration and release of nutrient nitrogen to plants. Biochars of CSS and GRH and their blends with 10% USS, having a significant calorific value (21-24 MJ/kg), could be considered satisfactory for energy valorization purposes. The bio-oils produced from current wastes having density 0.95-1.22 kg/m3, pH 3.3-6.6, viscosity 118-381 cP, and heating value 20.4-28.1 MJ/kg, could substitute heavy fuel oil in static applications after a de-oxygenation process. The higher heating value of pyrolytic gas corresponding to CSS was low. In contrast, that corresponding to GRH and USS (9-10 MJ/m3) is considered satisfactory for the energy requirements of the pyrolysis process at low temperatures.","PeriodicalId":198785,"journal":{"name":"Advances in Environmental and Engineering Research","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Pyrolysis Products of Industrial Wastes as Potential Feedstocks for Bioenergy and Biofuels\",\"authors\":\"D. Vamvuka, Katerina Esser, D. Marinakis, George Kalantzakis\",\"doi\":\"10.21926/aeer.2301005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aimed at evaluating all products from the low-temperature pyrolysis (350°C) of some industrial wastes, cotton stems and seeds (CSS), grape husks and curls (GRH), undigested sewage sludge (USS) and their blends in a fixed bed system and suggesting their possible applications. Solid and liquid products, biochars, and bio-oils were analyzed using various techniques by physicochemical, mineralogical, and chemical analyses. Gases were qualitatively and quantitatively analyzed using a thermogravimetric-mass spectrometry system. All biochar samples could be used for soil amendment. Co-application with composts or other by-products to soils could be more advantageous. USS and its blends with CSS or GRH at percentages 20% and 30% presented an increased potential for carbon sequestration and release of nutrient nitrogen to plants. Biochars of CSS and GRH and their blends with 10% USS, having a significant calorific value (21-24 MJ/kg), could be considered satisfactory for energy valorization purposes. The bio-oils produced from current wastes having density 0.95-1.22 kg/m3, pH 3.3-6.6, viscosity 118-381 cP, and heating value 20.4-28.1 MJ/kg, could substitute heavy fuel oil in static applications after a de-oxygenation process. The higher heating value of pyrolytic gas corresponding to CSS was low. In contrast, that corresponding to GRH and USS (9-10 MJ/m3) is considered satisfactory for the energy requirements of the pyrolysis process at low temperatures.\",\"PeriodicalId\":198785,\"journal\":{\"name\":\"Advances in Environmental and Engineering Research\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Environmental and Engineering Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21926/aeer.2301005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Environmental and Engineering Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/aeer.2301005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of Pyrolysis Products of Industrial Wastes as Potential Feedstocks for Bioenergy and Biofuels
This work aimed at evaluating all products from the low-temperature pyrolysis (350°C) of some industrial wastes, cotton stems and seeds (CSS), grape husks and curls (GRH), undigested sewage sludge (USS) and their blends in a fixed bed system and suggesting their possible applications. Solid and liquid products, biochars, and bio-oils were analyzed using various techniques by physicochemical, mineralogical, and chemical analyses. Gases were qualitatively and quantitatively analyzed using a thermogravimetric-mass spectrometry system. All biochar samples could be used for soil amendment. Co-application with composts or other by-products to soils could be more advantageous. USS and its blends with CSS or GRH at percentages 20% and 30% presented an increased potential for carbon sequestration and release of nutrient nitrogen to plants. Biochars of CSS and GRH and their blends with 10% USS, having a significant calorific value (21-24 MJ/kg), could be considered satisfactory for energy valorization purposes. The bio-oils produced from current wastes having density 0.95-1.22 kg/m3, pH 3.3-6.6, viscosity 118-381 cP, and heating value 20.4-28.1 MJ/kg, could substitute heavy fuel oil in static applications after a de-oxygenation process. The higher heating value of pyrolytic gas corresponding to CSS was low. In contrast, that corresponding to GRH and USS (9-10 MJ/m3) is considered satisfactory for the energy requirements of the pyrolysis process at low temperatures.