分布式规划辅助深度强化学习在无人机网络中的碰撞与避障

Juntong Lin, Hsiao-Ting Chiu, Rung-Hung Gau
{"title":"分布式规划辅助深度强化学习在无人机网络中的碰撞与避障","authors":"Juntong Lin, Hsiao-Ting Chiu, Rung-Hung Gau","doi":"10.1109/VTC2021-Spring51267.2021.9448710","DOIUrl":null,"url":null,"abstract":"In this paper, we propose using a decentralized planning-assisted approach of deep reinforcement learning for collision and obstacle avoidance in UAV networks. We focus on a UAV network where there are multiple UAVs and multiple static obstacles. To avoid hitting obstacles without severely deviating from the ideal UAV trajectories, we propose merging adjacent obstacles based on convex hulls and design a novel trajectory planning algorithm. For UAVs to efficiently avoid collisions in a distributed manner, we propose using a decentralized multi-agent deep reinforcement learning approach based on policy gradients. In addition, we propose using a priority-based algorithm for avoiding collisions without reducing the speeds of UAVs too much. Simulation results show that the proposed decentralized planning-assisted deep reinforcement learning approach outperforms a number of baseline approaches in terms of the probability that all UAVs successfully reach their goals within the deadline.","PeriodicalId":194840,"journal":{"name":"2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Decentralized Planning-Assisted Deep Reinforcement Learning for Collision and Obstacle Avoidance in UAV Networks\",\"authors\":\"Juntong Lin, Hsiao-Ting Chiu, Rung-Hung Gau\",\"doi\":\"10.1109/VTC2021-Spring51267.2021.9448710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose using a decentralized planning-assisted approach of deep reinforcement learning for collision and obstacle avoidance in UAV networks. We focus on a UAV network where there are multiple UAVs and multiple static obstacles. To avoid hitting obstacles without severely deviating from the ideal UAV trajectories, we propose merging adjacent obstacles based on convex hulls and design a novel trajectory planning algorithm. For UAVs to efficiently avoid collisions in a distributed manner, we propose using a decentralized multi-agent deep reinforcement learning approach based on policy gradients. In addition, we propose using a priority-based algorithm for avoiding collisions without reducing the speeds of UAVs too much. Simulation results show that the proposed decentralized planning-assisted deep reinforcement learning approach outperforms a number of baseline approaches in terms of the probability that all UAVs successfully reach their goals within the deadline.\",\"PeriodicalId\":194840,\"journal\":{\"name\":\"2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTC2021-Spring51267.2021.9448710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTC2021-Spring51267.2021.9448710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提出了一种分散规划辅助的深度强化学习方法,用于无人机网络中的碰撞和避障。我们关注的是一个有多个无人机和多个静态障碍物的无人机网络。为了在不严重偏离理想轨迹的情况下避免碰撞障碍物,提出了一种基于凸包的相邻障碍物合并算法,并设计了一种新的轨迹规划算法。为了使无人机以分布式方式有效避免碰撞,我们提出了一种基于策略梯度的分散多智能体深度强化学习方法。此外,我们建议使用基于优先级的算法来避免碰撞,而不会过多降低无人机的速度。仿真结果表明,所提出的分散规划辅助深度强化学习方法在所有无人机在截止日期内成功到达目标的概率方面优于许多基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decentralized Planning-Assisted Deep Reinforcement Learning for Collision and Obstacle Avoidance in UAV Networks
In this paper, we propose using a decentralized planning-assisted approach of deep reinforcement learning for collision and obstacle avoidance in UAV networks. We focus on a UAV network where there are multiple UAVs and multiple static obstacles. To avoid hitting obstacles without severely deviating from the ideal UAV trajectories, we propose merging adjacent obstacles based on convex hulls and design a novel trajectory planning algorithm. For UAVs to efficiently avoid collisions in a distributed manner, we propose using a decentralized multi-agent deep reinforcement learning approach based on policy gradients. In addition, we propose using a priority-based algorithm for avoiding collisions without reducing the speeds of UAVs too much. Simulation results show that the proposed decentralized planning-assisted deep reinforcement learning approach outperforms a number of baseline approaches in terms of the probability that all UAVs successfully reach their goals within the deadline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信