临床进展记录文本挖掘中数据质量的案例研究

D. Berndt, J. McCart, Dezon K. Finch, S. Luther
{"title":"临床进展记录文本挖掘中数据质量的案例研究","authors":"D. Berndt, J. McCart, Dezon K. Finch, S. Luther","doi":"10.1145/2669368","DOIUrl":null,"url":null,"abstract":"Text analytic methods are often aimed at extracting useful information from the vast array of unstructured, free format text documents that are created by almost all organizational processes. The success of any text mining application rests on the quality of the underlying data being analyzed, including both predictive features and outcome labels. In this case study, some focused experiments regarding data quality are used to assess the robustness of Statistical Text Mining (STM) algorithms when applied to clinical progress notes. In particular, the experiments consider the impacts of task complexity (by removing signals), training set size, and target outcome quality. While this research is conducted using a dataset drawn from the medical domain, the data quality issues explored are of more general interest.","PeriodicalId":178565,"journal":{"name":"ACM Trans. Manag. Inf. Syst.","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"A Case Study of Data Quality in Text Mining Clinical Progress Notes\",\"authors\":\"D. Berndt, J. McCart, Dezon K. Finch, S. Luther\",\"doi\":\"10.1145/2669368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text analytic methods are often aimed at extracting useful information from the vast array of unstructured, free format text documents that are created by almost all organizational processes. The success of any text mining application rests on the quality of the underlying data being analyzed, including both predictive features and outcome labels. In this case study, some focused experiments regarding data quality are used to assess the robustness of Statistical Text Mining (STM) algorithms when applied to clinical progress notes. In particular, the experiments consider the impacts of task complexity (by removing signals), training set size, and target outcome quality. While this research is conducted using a dataset drawn from the medical domain, the data quality issues explored are of more general interest.\",\"PeriodicalId\":178565,\"journal\":{\"name\":\"ACM Trans. Manag. Inf. Syst.\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Manag. Inf. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2669368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Manag. Inf. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2669368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

文本分析方法通常旨在从几乎所有组织过程创建的大量非结构化、自由格式的文本文档中提取有用的信息。任何文本挖掘应用程序的成功都取决于所分析的底层数据的质量,包括预测特征和结果标签。在本案例研究中,一些关于数据质量的重点实验被用来评估统计文本挖掘(STM)算法在应用于临床进展记录时的鲁棒性。特别是,实验考虑了任务复杂性(通过去除信号)、训练集大小和目标结果质量的影响。虽然本研究是使用来自医学领域的数据集进行的,但所探索的数据质量问题具有更普遍的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Case Study of Data Quality in Text Mining Clinical Progress Notes
Text analytic methods are often aimed at extracting useful information from the vast array of unstructured, free format text documents that are created by almost all organizational processes. The success of any text mining application rests on the quality of the underlying data being analyzed, including both predictive features and outcome labels. In this case study, some focused experiments regarding data quality are used to assess the robustness of Statistical Text Mining (STM) algorithms when applied to clinical progress notes. In particular, the experiments consider the impacts of task complexity (by removing signals), training set size, and target outcome quality. While this research is conducted using a dataset drawn from the medical domain, the data quality issues explored are of more general interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信