{"title":"时滞纳米操纵系统重复控制器跟踪性能的改进","authors":"Pengbo Liu, P. Yan","doi":"10.1115/detc2019-97313","DOIUrl":null,"url":null,"abstract":"\n This paper investigates the robust repetitive controller design with improved tracking performance for nano-manipulating systems with time delay. In order to handle the time delay caused by the analog-to-digital (A/D) conversion of the capacitive sensors with ultra high precision, we modify the conventional repetitive control structure where the design of low pass filter is formulated as an H∞ optimization problem. For the purpose of tracking performance improvement, we further modify the structure of the low pass filter by shaping the sensitivity functions of the closed-loop system. With consideration of the existing of model uncertainties, the design of the modified low pass filter is also formulated as an H∞ optimization of infinite dimensional systems. The effectiveness of the proposed repetitive control architecture is further verified by real time experiments on a piezo driven nano-stage, where significant tracking performance improvements are demonstrated comparing with the traditional repetitive controller.","PeriodicalId":166402,"journal":{"name":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tracking Performance Improvement of Repetitive Controller for Nano-Manipulating Systems With Time Delays\",\"authors\":\"Pengbo Liu, P. Yan\",\"doi\":\"10.1115/detc2019-97313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper investigates the robust repetitive controller design with improved tracking performance for nano-manipulating systems with time delay. In order to handle the time delay caused by the analog-to-digital (A/D) conversion of the capacitive sensors with ultra high precision, we modify the conventional repetitive control structure where the design of low pass filter is formulated as an H∞ optimization problem. For the purpose of tracking performance improvement, we further modify the structure of the low pass filter by shaping the sensitivity functions of the closed-loop system. With consideration of the existing of model uncertainties, the design of the modified low pass filter is also formulated as an H∞ optimization of infinite dimensional systems. The effectiveness of the proposed repetitive control architecture is further verified by real time experiments on a piezo driven nano-stage, where significant tracking performance improvements are demonstrated comparing with the traditional repetitive controller.\",\"PeriodicalId\":166402,\"journal\":{\"name\":\"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2019-97313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-97313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tracking Performance Improvement of Repetitive Controller for Nano-Manipulating Systems With Time Delays
This paper investigates the robust repetitive controller design with improved tracking performance for nano-manipulating systems with time delay. In order to handle the time delay caused by the analog-to-digital (A/D) conversion of the capacitive sensors with ultra high precision, we modify the conventional repetitive control structure where the design of low pass filter is formulated as an H∞ optimization problem. For the purpose of tracking performance improvement, we further modify the structure of the low pass filter by shaping the sensitivity functions of the closed-loop system. With consideration of the existing of model uncertainties, the design of the modified low pass filter is also formulated as an H∞ optimization of infinite dimensional systems. The effectiveness of the proposed repetitive control architecture is further verified by real time experiments on a piezo driven nano-stage, where significant tracking performance improvements are demonstrated comparing with the traditional repetitive controller.