简短公告:无线网络中的分布式争用解决方案

Thomas Kesselheim, Berthold Vöcking
{"title":"简短公告:无线网络中的分布式争用解决方案","authors":"Thomas Kesselheim, Berthold Vöcking","doi":"10.1145/1835698.1835731","DOIUrl":null,"url":null,"abstract":"We present and analyze simple distributed contention resolution protocols for wireless networks. In our setting, one is given n pairs of senders and receivers located in a metric space. Each sender wants to transmit a signal to its receiver at a prespecified power level, e.g., all senders use the same, uniform power level as it is typically implemented in practice. Our analysis is based on the physical model in which the success of a transmission depends on the Signal-to-Interference-plus-Noise-Ratio (SINR). The objective is to minimize the number of time slots until all signals are successfully transmitted. Our main technical contribution is the introduction of a measure called maximum average affectance enabling us to analyze random contention-resolution algorithms in which each packet is transmitted in each step with a fixed probability depending on the maximum average affectance. We prove that the schedule generated this way is only an O(log2 n) factor longer than the optimal one, provided that the prespecified power levels satisfy natural monontonicity properties. By modifying the algorithm, senders need not to know the maximum average affectance in advance but only static information about the network. In addition, we extend our approach to multi-hop communication achieving the same appoximation factor.","PeriodicalId":447863,"journal":{"name":"Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing","volume":"356 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Brief announcement: distributed contention resolution in wireless networks\",\"authors\":\"Thomas Kesselheim, Berthold Vöcking\",\"doi\":\"10.1145/1835698.1835731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present and analyze simple distributed contention resolution protocols for wireless networks. In our setting, one is given n pairs of senders and receivers located in a metric space. Each sender wants to transmit a signal to its receiver at a prespecified power level, e.g., all senders use the same, uniform power level as it is typically implemented in practice. Our analysis is based on the physical model in which the success of a transmission depends on the Signal-to-Interference-plus-Noise-Ratio (SINR). The objective is to minimize the number of time slots until all signals are successfully transmitted. Our main technical contribution is the introduction of a measure called maximum average affectance enabling us to analyze random contention-resolution algorithms in which each packet is transmitted in each step with a fixed probability depending on the maximum average affectance. We prove that the schedule generated this way is only an O(log2 n) factor longer than the optimal one, provided that the prespecified power levels satisfy natural monontonicity properties. By modifying the algorithm, senders need not to know the maximum average affectance in advance but only static information about the network. In addition, we extend our approach to multi-hop communication achieving the same appoximation factor.\",\"PeriodicalId\":447863,\"journal\":{\"name\":\"Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing\",\"volume\":\"356 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1835698.1835731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1835698.1835731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出并分析了无线网络中简单的分布式争用解决协议。在我们的设置中,有n对位于度量空间中的发送者和接收者。每个发送方都希望以预先指定的功率水平向其接收方发送信号,例如,所有发送方都使用相同的、统一的功率水平,因为它通常在实践中实现。我们的分析是基于物理模型,其中传输的成功取决于信号干扰加噪声比(SINR)。目标是尽量减少时隙的数量,直到所有信号都成功传输。我们的主要技术贡献是引入了一种称为最大平均影响的度量,使我们能够分析随机争用解决算法,其中每个数据包在每个步骤中以依赖于最大平均影响的固定概率传输。在满足自然单调性的前提下,证明了用这种方法生成的调度只比最优调度长O(log2 n)个因子。通过修改算法,发送方不需要事先知道最大平均影响,只需要知道网络的静态信息。此外,我们将我们的方法扩展到多跳通信,以实现相同的近似因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brief announcement: distributed contention resolution in wireless networks
We present and analyze simple distributed contention resolution protocols for wireless networks. In our setting, one is given n pairs of senders and receivers located in a metric space. Each sender wants to transmit a signal to its receiver at a prespecified power level, e.g., all senders use the same, uniform power level as it is typically implemented in practice. Our analysis is based on the physical model in which the success of a transmission depends on the Signal-to-Interference-plus-Noise-Ratio (SINR). The objective is to minimize the number of time slots until all signals are successfully transmitted. Our main technical contribution is the introduction of a measure called maximum average affectance enabling us to analyze random contention-resolution algorithms in which each packet is transmitted in each step with a fixed probability depending on the maximum average affectance. We prove that the schedule generated this way is only an O(log2 n) factor longer than the optimal one, provided that the prespecified power levels satisfy natural monontonicity properties. By modifying the algorithm, senders need not to know the maximum average affectance in advance but only static information about the network. In addition, we extend our approach to multi-hop communication achieving the same appoximation factor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信