破解基于SDN的dcn网络监控

Zhiming Hu, Jun Luo
{"title":"破解基于SDN的dcn网络监控","authors":"Zhiming Hu, Jun Luo","doi":"10.1109/INFOCOM.2015.7218383","DOIUrl":null,"url":null,"abstract":"The outputs of network monitoring such as traffic matrix and elephant flow identification are essential inputs to many network operations and system designs in DCNs, but most solutions for network monitoring adopt direct measurements or inference alone, which may suffer from either high network overhead or low precision. Different from those approaches, we combine the direct measurements offered by software defined network (SDN) and inference techniques based on network tomography to derive a hybrid network monitoring scheme in this paper; it can strike a balance between measurement overhead and accuracy. Essentially, we use SDN to make the severely low determined network tomography (TM estimation) problem in DCNs to be a more determined one. Thus many classic network tomography algorithms in ISP networks become feasible for DCNs. By combining SDN with network tomography, we can also identify the elephant flows with high precision while occupying very little network resource. According to our experiment results, the accuracy of estimating the TM is far higher than those inferred by SNMP link counters only and the performance of identifying elephant flows is also very promising.","PeriodicalId":342583,"journal":{"name":"2015 IEEE Conference on Computer Communications (INFOCOM)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Cracking network monitoring in DCNs with SDN\",\"authors\":\"Zhiming Hu, Jun Luo\",\"doi\":\"10.1109/INFOCOM.2015.7218383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The outputs of network monitoring such as traffic matrix and elephant flow identification are essential inputs to many network operations and system designs in DCNs, but most solutions for network monitoring adopt direct measurements or inference alone, which may suffer from either high network overhead or low precision. Different from those approaches, we combine the direct measurements offered by software defined network (SDN) and inference techniques based on network tomography to derive a hybrid network monitoring scheme in this paper; it can strike a balance between measurement overhead and accuracy. Essentially, we use SDN to make the severely low determined network tomography (TM estimation) problem in DCNs to be a more determined one. Thus many classic network tomography algorithms in ISP networks become feasible for DCNs. By combining SDN with network tomography, we can also identify the elephant flows with high precision while occupying very little network resource. According to our experiment results, the accuracy of estimating the TM is far higher than those inferred by SNMP link counters only and the performance of identifying elephant flows is also very promising.\",\"PeriodicalId\":342583,\"journal\":{\"name\":\"2015 IEEE Conference on Computer Communications (INFOCOM)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Conference on Computer Communications (INFOCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOM.2015.7218383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Conference on Computer Communications (INFOCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM.2015.7218383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

网络监控的输出,如流量矩阵和象流识别,是许多网络操作和dcn系统设计的重要输入,但大多数网络监控解决方案仅采用直接测量或推理,这可能会导致网络开销高或精度低。与这些方法不同的是,我们将软件定义网络(SDN)提供的直接测量与基于网络断层扫描的推理技术相结合,得出了一种混合网络监测方案;它可以在测量开销和精度之间取得平衡。从本质上讲,我们使用SDN使dcn中严重低确定的网络断层扫描(TM估计)问题成为一个更确定的问题。因此,ISP网络中的许多经典网络层析成像算法在DCNs中变得可行。通过将SDN与网络断层扫描相结合,我们还可以在占用很少的网络资源的情况下,高精度地识别大象流。从我们的实验结果来看,估计TM的准确性远远高于仅通过SNMP链路计数器推断的结果,并且识别象流的性能也很有前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cracking network monitoring in DCNs with SDN
The outputs of network monitoring such as traffic matrix and elephant flow identification are essential inputs to many network operations and system designs in DCNs, but most solutions for network monitoring adopt direct measurements or inference alone, which may suffer from either high network overhead or low precision. Different from those approaches, we combine the direct measurements offered by software defined network (SDN) and inference techniques based on network tomography to derive a hybrid network monitoring scheme in this paper; it can strike a balance between measurement overhead and accuracy. Essentially, we use SDN to make the severely low determined network tomography (TM estimation) problem in DCNs to be a more determined one. Thus many classic network tomography algorithms in ISP networks become feasible for DCNs. By combining SDN with network tomography, we can also identify the elephant flows with high precision while occupying very little network resource. According to our experiment results, the accuracy of estimating the TM is far higher than those inferred by SNMP link counters only and the performance of identifying elephant flows is also very promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信