小波域盲均衡

Amir Minayi Jalil, H. Amindavar, J. Cances
{"title":"小波域盲均衡","authors":"Amir Minayi Jalil, H. Amindavar, J. Cances","doi":"10.1109/ISWCS.2008.4726109","DOIUrl":null,"url":null,"abstract":"In this paper we propose and analyze an approach to improve the convergence rate of blind equalizers for nonstationary signals using wavelet transformation. Transform domain adaptive filters are famous for their improved convergence rate over the conventional least mean square (LMS) algorithm and also facilities for noise reduction without giving much increase in the computational cost; on the other hand, blind equalizers suffer from the poor convergence rate. We propose a wavelet domain (WD) equalization method to improve the convergence rate and discuss its advantage over other transform domain adaptive filters. This discussion is performed on two important categories of blind equalization; the stochastic gradient descent approach and cyclostationary based approach that is used in the case of blind fractionally spaced equalization (FSE) of channels.","PeriodicalId":158650,"journal":{"name":"2008 IEEE International Symposium on Wireless Communication Systems","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Blind equalization in wavelet domain\",\"authors\":\"Amir Minayi Jalil, H. Amindavar, J. Cances\",\"doi\":\"10.1109/ISWCS.2008.4726109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose and analyze an approach to improve the convergence rate of blind equalizers for nonstationary signals using wavelet transformation. Transform domain adaptive filters are famous for their improved convergence rate over the conventional least mean square (LMS) algorithm and also facilities for noise reduction without giving much increase in the computational cost; on the other hand, blind equalizers suffer from the poor convergence rate. We propose a wavelet domain (WD) equalization method to improve the convergence rate and discuss its advantage over other transform domain adaptive filters. This discussion is performed on two important categories of blind equalization; the stochastic gradient descent approach and cyclostationary based approach that is used in the case of blind fractionally spaced equalization (FSE) of channels.\",\"PeriodicalId\":158650,\"journal\":{\"name\":\"2008 IEEE International Symposium on Wireless Communication Systems\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Symposium on Wireless Communication Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISWCS.2008.4726109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Wireless Communication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS.2008.4726109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出并分析了一种利用小波变换提高非平稳信号盲均衡器收敛速度的方法。变换域自适应滤波器以其比传统的最小均方(LMS)算法更快的收敛速度和在不增加计算成本的情况下进行降噪而闻名;另一方面,盲目均衡器的收敛速度较差。提出了一种小波域均衡化方法来提高收敛速度,并讨论了它相对于其他变换域自适应滤波器的优点。本文讨论了两类重要的盲均衡;随机梯度下降法和基于循环平稳的方法用于信道盲分数间隔均衡(FSE)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blind equalization in wavelet domain
In this paper we propose and analyze an approach to improve the convergence rate of blind equalizers for nonstationary signals using wavelet transformation. Transform domain adaptive filters are famous for their improved convergence rate over the conventional least mean square (LMS) algorithm and also facilities for noise reduction without giving much increase in the computational cost; on the other hand, blind equalizers suffer from the poor convergence rate. We propose a wavelet domain (WD) equalization method to improve the convergence rate and discuss its advantage over other transform domain adaptive filters. This discussion is performed on two important categories of blind equalization; the stochastic gradient descent approach and cyclostationary based approach that is used in the case of blind fractionally spaced equalization (FSE) of channels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信