boboliubov正则变换方法中bogoliubov生成泛函方程的解析方面

N. Bogolubov, A. Prykarpatsky
{"title":"boboliubov正则变换方法中bogoliubov生成泛函方程的解析方面","authors":"N. Bogolubov, A. Prykarpatsky","doi":"10.2478/V10005-007-0015-X","DOIUrl":null,"url":null,"abstract":"The analytic aspects of the Bogoliubov generating functional equations and their transformation properties within the Bogoliubov canonical transformation method are studied. The classical Bogoliubov idea [2] to use the Wigner density operator transformation for studying the non equilibrium distribution functions within the Bogoliubov canonical transformation method is developed, a new analytic non-stationary solution to the classical N.N. Bogoliubov evolution functional equation is constructed.","PeriodicalId":249199,"journal":{"name":"Old and New Concepts of Physics","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE ANALYTIC ASPECTS OF THE BOGOLIUBOV GENERATING FUNCTIONAL EQUATIONS WITHIN THE BOBOLIUBOV CANONICAL TRANSFORMATION METHOD\",\"authors\":\"N. Bogolubov, A. Prykarpatsky\",\"doi\":\"10.2478/V10005-007-0015-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The analytic aspects of the Bogoliubov generating functional equations and their transformation properties within the Bogoliubov canonical transformation method are studied. The classical Bogoliubov idea [2] to use the Wigner density operator transformation for studying the non equilibrium distribution functions within the Bogoliubov canonical transformation method is developed, a new analytic non-stationary solution to the classical N.N. Bogoliubov evolution functional equation is constructed.\",\"PeriodicalId\":249199,\"journal\":{\"name\":\"Old and New Concepts of Physics\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Old and New Concepts of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/V10005-007-0015-X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Old and New Concepts of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/V10005-007-0015-X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了Bogoliubov正则变换方法中Bogoliubov生成泛函方程的解析方面及其变换性质。提出了经典Bogoliubov思想[2],利用Wigner密度算子变换研究Bogoliubov正则变换方法中的非平衡分布函数,构造了经典N.N. Bogoliubov演化泛函方程的一个新的解析非平稳解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THE ANALYTIC ASPECTS OF THE BOGOLIUBOV GENERATING FUNCTIONAL EQUATIONS WITHIN THE BOBOLIUBOV CANONICAL TRANSFORMATION METHOD
The analytic aspects of the Bogoliubov generating functional equations and their transformation properties within the Bogoliubov canonical transformation method are studied. The classical Bogoliubov idea [2] to use the Wigner density operator transformation for studying the non equilibrium distribution functions within the Bogoliubov canonical transformation method is developed, a new analytic non-stationary solution to the classical N.N. Bogoliubov evolution functional equation is constructed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信