CART算法与种植历法在西爪哇卡拉旺县水稻生育期估算中的比较

Nadira Fawziyya Masnur, Nurul Izza Afkharinah, Elisabeth Gunawan, A. Agustan, S. Yulianto, K. Mutijarsa, Abdul Karim
{"title":"CART算法与种植历法在西爪哇卡拉旺县水稻生育期估算中的比较","authors":"Nadira Fawziyya Masnur, Nurul Izza Afkharinah, Elisabeth Gunawan, A. Agustan, S. Yulianto, K. Mutijarsa, Abdul Karim","doi":"10.1109/ICARES56907.2022.9993473","DOIUrl":null,"url":null,"abstract":"Classification And Regression Trees (CART) is one of the classic and simple algorithm in predictive modeling machine learning. This study aims to compare the result of paddy growth stage estimates based on CART model of Sentinel-1A Synthetic Aperture Radar (SAR) data and Cropping Calendar (KATAM). The construction of the CART model utilises real data field from Area Frame Sampling (Kerangka Sampling Area or KSA) in Karawang Regency observed on 2020. The CART algorithm makes predictions using a tree structure or hierarchical structure. The CART algorithm focuses on finding a decision tree model that has a Gini impurities value = 0. The rules for classifying class based on the physical polarization spectrum which is represented by pixel digital number from Vertical-Vertical (VV), Vertical-Horizontal (VH), and VV/VH of SAR image properties. This study found that the initial planting time is different. The CART model estimates the initial planting time is on September, while the KATAM estimates on November-December.","PeriodicalId":252801,"journal":{"name":"2022 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of CART Algorithm and Cropping Calendar in Estimating Paddy Growth Stage in Karawang Regency, West Java\",\"authors\":\"Nadira Fawziyya Masnur, Nurul Izza Afkharinah, Elisabeth Gunawan, A. Agustan, S. Yulianto, K. Mutijarsa, Abdul Karim\",\"doi\":\"10.1109/ICARES56907.2022.9993473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification And Regression Trees (CART) is one of the classic and simple algorithm in predictive modeling machine learning. This study aims to compare the result of paddy growth stage estimates based on CART model of Sentinel-1A Synthetic Aperture Radar (SAR) data and Cropping Calendar (KATAM). The construction of the CART model utilises real data field from Area Frame Sampling (Kerangka Sampling Area or KSA) in Karawang Regency observed on 2020. The CART algorithm makes predictions using a tree structure or hierarchical structure. The CART algorithm focuses on finding a decision tree model that has a Gini impurities value = 0. The rules for classifying class based on the physical polarization spectrum which is represented by pixel digital number from Vertical-Vertical (VV), Vertical-Horizontal (VH), and VV/VH of SAR image properties. This study found that the initial planting time is different. The CART model estimates the initial planting time is on September, while the KATAM estimates on November-December.\",\"PeriodicalId\":252801,\"journal\":{\"name\":\"2022 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARES56907.2022.9993473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARES56907.2022.9993473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分类与回归树(CART)是预测建模机器学习中最经典、最简单的算法之一。本研究旨在比较基于Sentinel-1A合成孔径雷达(SAR)数据的CART模型和基于种植历(KATAM)的水稻生育期估算结果。CART模型的构建利用了2020年观测到的卡拉旺县区域帧采样(Kerangka Sampling Area或KSA)的真实数据场。CART算法使用树状结构或分层结构进行预测。CART算法的重点是寻找一个Gini杂质值= 0的决策树模型。根据SAR图像属性的垂直-垂直(VV)、垂直-水平(VH)和垂直-水平(VV /VH)以像元数字表示的物理偏振谱进行分类的规则。本研究发现,初植时间不同。CART模型估计最初的种植时间是在9月,而KATAM估计在11 - 12月。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of CART Algorithm and Cropping Calendar in Estimating Paddy Growth Stage in Karawang Regency, West Java
Classification And Regression Trees (CART) is one of the classic and simple algorithm in predictive modeling machine learning. This study aims to compare the result of paddy growth stage estimates based on CART model of Sentinel-1A Synthetic Aperture Radar (SAR) data and Cropping Calendar (KATAM). The construction of the CART model utilises real data field from Area Frame Sampling (Kerangka Sampling Area or KSA) in Karawang Regency observed on 2020. The CART algorithm makes predictions using a tree structure or hierarchical structure. The CART algorithm focuses on finding a decision tree model that has a Gini impurities value = 0. The rules for classifying class based on the physical polarization spectrum which is represented by pixel digital number from Vertical-Vertical (VV), Vertical-Horizontal (VH), and VV/VH of SAR image properties. This study found that the initial planting time is different. The CART model estimates the initial planting time is on September, while the KATAM estimates on November-December.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信