{"title":"胜任遗传算法的数据密集型计算:使用meandre的试点研究","authors":"Xavier Llorà","doi":"10.1145/1569901.1570087","DOIUrl":null,"url":null,"abstract":"Data-intensive computing has positioned itself as a valuable programming paradigm to efficiently approach problems requiring processing very large volumes of data. This paper presents a pilot study about how to apply the data-intensive computing paradigm to evolutionary computation algorithms. Two representative cases (selectorecombinative genetic algorithms and estimation of distribution algorithms) are presented, analyzed, and discussed. This study shows that equivalent data-intensive computing evolutionary computation algorithms can be easily developed, providing robust and scalable algorithms for the multicore-computing era. Experimental results show how such algorithms scale with the number of available cores without further modification.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Data-intensive computing for competent genetic algorithms: a pilot study using meandre\",\"authors\":\"Xavier Llorà\",\"doi\":\"10.1145/1569901.1570087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data-intensive computing has positioned itself as a valuable programming paradigm to efficiently approach problems requiring processing very large volumes of data. This paper presents a pilot study about how to apply the data-intensive computing paradigm to evolutionary computation algorithms. Two representative cases (selectorecombinative genetic algorithms and estimation of distribution algorithms) are presented, analyzed, and discussed. This study shows that equivalent data-intensive computing evolutionary computation algorithms can be easily developed, providing robust and scalable algorithms for the multicore-computing era. Experimental results show how such algorithms scale with the number of available cores without further modification.\",\"PeriodicalId\":193093,\"journal\":{\"name\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1569901.1570087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data-intensive computing for competent genetic algorithms: a pilot study using meandre
Data-intensive computing has positioned itself as a valuable programming paradigm to efficiently approach problems requiring processing very large volumes of data. This paper presents a pilot study about how to apply the data-intensive computing paradigm to evolutionary computation algorithms. Two representative cases (selectorecombinative genetic algorithms and estimation of distribution algorithms) are presented, analyzed, and discussed. This study shows that equivalent data-intensive computing evolutionary computation algorithms can be easily developed, providing robust and scalable algorithms for the multicore-computing era. Experimental results show how such algorithms scale with the number of available cores without further modification.