胜任遗传算法的数据密集型计算:使用meandre的试点研究

Xavier Llorà
{"title":"胜任遗传算法的数据密集型计算:使用meandre的试点研究","authors":"Xavier Llorà","doi":"10.1145/1569901.1570087","DOIUrl":null,"url":null,"abstract":"Data-intensive computing has positioned itself as a valuable programming paradigm to efficiently approach problems requiring processing very large volumes of data. This paper presents a pilot study about how to apply the data-intensive computing paradigm to evolutionary computation algorithms. Two representative cases (selectorecombinative genetic algorithms and estimation of distribution algorithms) are presented, analyzed, and discussed. This study shows that equivalent data-intensive computing evolutionary computation algorithms can be easily developed, providing robust and scalable algorithms for the multicore-computing era. Experimental results show how such algorithms scale with the number of available cores without further modification.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Data-intensive computing for competent genetic algorithms: a pilot study using meandre\",\"authors\":\"Xavier Llorà\",\"doi\":\"10.1145/1569901.1570087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data-intensive computing has positioned itself as a valuable programming paradigm to efficiently approach problems requiring processing very large volumes of data. This paper presents a pilot study about how to apply the data-intensive computing paradigm to evolutionary computation algorithms. Two representative cases (selectorecombinative genetic algorithms and estimation of distribution algorithms) are presented, analyzed, and discussed. This study shows that equivalent data-intensive computing evolutionary computation algorithms can be easily developed, providing robust and scalable algorithms for the multicore-computing era. Experimental results show how such algorithms scale with the number of available cores without further modification.\",\"PeriodicalId\":193093,\"journal\":{\"name\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1569901.1570087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

数据密集型计算已经将自己定位为一种有价值的编程范例,可以有效地解决需要处理大量数据的问题。本文对如何将数据密集型计算范式应用于进化计算算法进行了初步研究。给出了两个具有代表性的案例(选择重组遗传算法和分布估计算法),并对其进行了分析和讨论。该研究表明,等效的数据密集型计算进化计算算法可以很容易地开发,为多核计算时代提供鲁棒性和可扩展性的算法。实验结果表明,该算法在不作进一步修改的情况下,可以随可用内核数量的增加而扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-intensive computing for competent genetic algorithms: a pilot study using meandre
Data-intensive computing has positioned itself as a valuable programming paradigm to efficiently approach problems requiring processing very large volumes of data. This paper presents a pilot study about how to apply the data-intensive computing paradigm to evolutionary computation algorithms. Two representative cases (selectorecombinative genetic algorithms and estimation of distribution algorithms) are presented, analyzed, and discussed. This study shows that equivalent data-intensive computing evolutionary computation algorithms can be easily developed, providing robust and scalable algorithms for the multicore-computing era. Experimental results show how such algorithms scale with the number of available cores without further modification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信