动态变压器额定应力-强度预测模型

A. Bracale, G. Carpinelli, P. De Falco
{"title":"动态变压器额定应力-强度预测模型","authors":"A. Bracale, G. Carpinelli, P. De Falco","doi":"10.1109/ICCEP.2019.8890172","DOIUrl":null,"url":null,"abstract":"Operating distribution networks by the dynamic thermal rating of lines and transformers allows for reaching the operational excellence and for optimizing the power delivery. However, due to the intrinsic uncertainties involved in the dynamic thermal rating estimation, the problem should be framed within a probabilistic environment. This paper focuses on distribution transformers; a novel non-parametric stress-strength model is presented in order to estimate the probability of the stress (i.e., the transformer loading current) to be smaller than the strength (i.e., the dynamic transformer rating). The model is based on a logistic regression of the companion binomial regression problem. Numerical experiments based on actual data collected at an Italian industrial facility are presented to estimate the performances of the stress-strength model.","PeriodicalId":277718,"journal":{"name":"2019 International Conference on Clean Electrical Power (ICCEP)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Predictive Stress-Strength Model Addressing the Dynamic Transformer Rating\",\"authors\":\"A. Bracale, G. Carpinelli, P. De Falco\",\"doi\":\"10.1109/ICCEP.2019.8890172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Operating distribution networks by the dynamic thermal rating of lines and transformers allows for reaching the operational excellence and for optimizing the power delivery. However, due to the intrinsic uncertainties involved in the dynamic thermal rating estimation, the problem should be framed within a probabilistic environment. This paper focuses on distribution transformers; a novel non-parametric stress-strength model is presented in order to estimate the probability of the stress (i.e., the transformer loading current) to be smaller than the strength (i.e., the dynamic transformer rating). The model is based on a logistic regression of the companion binomial regression problem. Numerical experiments based on actual data collected at an Italian industrial facility are presented to estimate the performances of the stress-strength model.\",\"PeriodicalId\":277718,\"journal\":{\"name\":\"2019 International Conference on Clean Electrical Power (ICCEP)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Clean Electrical Power (ICCEP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCEP.2019.8890172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Clean Electrical Power (ICCEP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEP.2019.8890172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

通过线路和变压器的动态热额定值来运行配电网络,可以实现卓越的运行并优化电力输送。然而,由于动态热额定值估计所涉及的内在不确定性,该问题应在概率环境中进行框架。本文主要研究配电变压器;为了估计应力(即变压器负载电流)小于强度(即变压器动态额定值)的概率,提出了一种新的非参数应力-强度模型。该模型是基于伴随二项回归问题的逻辑回归。基于意大利某工业设施的实际数据,给出了数值实验来评估应力-强度模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Predictive Stress-Strength Model Addressing the Dynamic Transformer Rating
Operating distribution networks by the dynamic thermal rating of lines and transformers allows for reaching the operational excellence and for optimizing the power delivery. However, due to the intrinsic uncertainties involved in the dynamic thermal rating estimation, the problem should be framed within a probabilistic environment. This paper focuses on distribution transformers; a novel non-parametric stress-strength model is presented in order to estimate the probability of the stress (i.e., the transformer loading current) to be smaller than the strength (i.e., the dynamic transformer rating). The model is based on a logistic regression of the companion binomial regression problem. Numerical experiments based on actual data collected at an Italian industrial facility are presented to estimate the performances of the stress-strength model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信