基于神经网络扰动观测器的强迫标称对象永磁同步电机精确位置控制

Jongsun Ko, B. Han
{"title":"基于神经网络扰动观测器的强迫标称对象永磁同步电机精确位置控制","authors":"Jongsun Ko, B. Han","doi":"10.1109/ICMECH.2006.252546","DOIUrl":null,"url":null,"abstract":"This paper presents a neural network (NN) torque observer that is used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator. Therefore, the response of PMSM (permanent magnet synchronous machine) follows that of the nominal plant. The load torque compensation method is composed of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is proposed. The parameter compensator with RLSM (recursive least square method) parameter estimator is suggested to increase the performance of the load torque observer and main controller. The proposed estimator is combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation and experiment, are shown in this paper","PeriodicalId":187202,"journal":{"name":"2006 IEEE International Conference on Mechatronics","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Precision Position Control of PMSM Using Neural Network Disturbance Observer on Forced Nominal Plant\",\"authors\":\"Jongsun Ko, B. Han\",\"doi\":\"10.1109/ICMECH.2006.252546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a neural network (NN) torque observer that is used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator. Therefore, the response of PMSM (permanent magnet synchronous machine) follows that of the nominal plant. The load torque compensation method is composed of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is proposed. The parameter compensator with RLSM (recursive least square method) parameter estimator is suggested to increase the performance of the load torque observer and main controller. The proposed estimator is combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation and experiment, are shown in this paper\",\"PeriodicalId\":187202,\"journal\":{\"name\":\"2006 IEEE International Conference on Mechatronics\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Mechatronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMECH.2006.252546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMECH.2006.252546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

提出了一种神经网络转矩观测器,用于无差拍负载转矩观测器,并通过参数估计器对补偿增益进行调节。因此,永磁同步电机(PMSM)的响应遵循标称工厂的响应。负载转矩补偿方法由神经无差拍观测器组成。为了降低噪声的影响,提出了一种采用MA过程实现后置滤波的方法。为了提高负载转矩观测器和主控制器的性能,提出了基于递推最小二乘法参数估计器的参数补偿器。该估计器与高性能神经转矩观测器相结合,解决了上述问题。结果表明,所提出的控制系统对负载转矩和参数变化具有鲁棒性和精确性。通过计算机仿真和实验验证了该方法的稳定性和实用性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Precision Position Control of PMSM Using Neural Network Disturbance Observer on Forced Nominal Plant
This paper presents a neural network (NN) torque observer that is used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator. Therefore, the response of PMSM (permanent magnet synchronous machine) follows that of the nominal plant. The load torque compensation method is composed of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is proposed. The parameter compensator with RLSM (recursive least square method) parameter estimator is suggested to increase the performance of the load torque observer and main controller. The proposed estimator is combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation and experiment, are shown in this paper
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信