树类上的魔法画线仪

A. Murugan
{"title":"树类上的魔法画线仪","authors":"A. Murugan","doi":"10.18052/WWW.SCIPRESS.COM/BMSA.9.33","DOIUrl":null,"url":null,"abstract":"B.D.Acharya and E. Sampathkumar (1) defined Graphoidal cover as partition of edge set of a graph G into internally disjoint paths (not necessarily open). The minimum cardinality of such cover is known as graphoidal covering number of G.","PeriodicalId":252632,"journal":{"name":"Bulletin of Mathematical Sciences and Applications","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Magic Graphoidal on Class of Trees\",\"authors\":\"A. Murugan\",\"doi\":\"10.18052/WWW.SCIPRESS.COM/BMSA.9.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"B.D.Acharya and E. Sampathkumar (1) defined Graphoidal cover as partition of edge set of a graph G into internally disjoint paths (not necessarily open). The minimum cardinality of such cover is known as graphoidal covering number of G.\",\"PeriodicalId\":252632,\"journal\":{\"name\":\"Bulletin of Mathematical Sciences and Applications\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18052/WWW.SCIPRESS.COM/BMSA.9.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18052/WWW.SCIPRESS.COM/BMSA.9.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

B.D.Acharya和E. Sampathkumar(1)将graphiidal cover定义为将图G的边集划分为内部不相交的路径(不一定是开的)。这种覆盖的最小基数称为G的笔状覆盖数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magic Graphoidal on Class of Trees
B.D.Acharya and E. Sampathkumar (1) defined Graphoidal cover as partition of edge set of a graph G into internally disjoint paths (not necessarily open). The minimum cardinality of such cover is known as graphoidal covering number of G.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信