{"title":"树类上的魔法画线仪","authors":"A. Murugan","doi":"10.18052/WWW.SCIPRESS.COM/BMSA.9.33","DOIUrl":null,"url":null,"abstract":"B.D.Acharya and E. Sampathkumar (1) defined Graphoidal cover as partition of edge set of a graph G into internally disjoint paths (not necessarily open). The minimum cardinality of such cover is known as graphoidal covering number of G.","PeriodicalId":252632,"journal":{"name":"Bulletin of Mathematical Sciences and Applications","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Magic Graphoidal on Class of Trees\",\"authors\":\"A. Murugan\",\"doi\":\"10.18052/WWW.SCIPRESS.COM/BMSA.9.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"B.D.Acharya and E. Sampathkumar (1) defined Graphoidal cover as partition of edge set of a graph G into internally disjoint paths (not necessarily open). The minimum cardinality of such cover is known as graphoidal covering number of G.\",\"PeriodicalId\":252632,\"journal\":{\"name\":\"Bulletin of Mathematical Sciences and Applications\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18052/WWW.SCIPRESS.COM/BMSA.9.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18052/WWW.SCIPRESS.COM/BMSA.9.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
B.D.Acharya and E. Sampathkumar (1) defined Graphoidal cover as partition of edge set of a graph G into internally disjoint paths (not necessarily open). The minimum cardinality of such cover is known as graphoidal covering number of G.