J. Hsieh, Chi-Hung Chuang, Sin-Yu Chen, Chih-Chiang Chen, Kuo-Chin Fan
{"title":"基于可变形三角剖分的人体部位分割","authors":"J. Hsieh, Chi-Hung Chuang, Sin-Yu Chen, Chih-Chiang Chen, Kuo-Chin Fan","doi":"10.1109/TSMCA.2010.2040272","DOIUrl":null,"url":null,"abstract":"This paper presents a new segmentation algorithm to segment a body posture into different body parts using the technique of triangulation. For well analyzing each posture, we first propose a triangulation-based method to triangulate it to different triangle meshes. Then, we use a depth-first search scheme to find a spanning tree as its skeleton feature from the set of triangulation meshes. The triangulation-based scheme to extract important skeleton features has more robustness and effectiveness than other silhouette-based approaches. Then, different body parts can be roughly extracted by removing all the branching points from the spanning tree. A model-driven technique is then proposed for more accurately segmenting a human body into semantic parts. This technique uses the concept of Gaussian mixture model (GMM) to model different visual properties of different body parts. Then, a suitable segmentation scheme can be driven by classifying these models using their skeletons. Experimental results have proved that the proposed method is robust, accurate, and powerful in body part segmentation","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Segmentation of Human Body Parts Using Deformable Triangulation\",\"authors\":\"J. Hsieh, Chi-Hung Chuang, Sin-Yu Chen, Chih-Chiang Chen, Kuo-Chin Fan\",\"doi\":\"10.1109/TSMCA.2010.2040272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new segmentation algorithm to segment a body posture into different body parts using the technique of triangulation. For well analyzing each posture, we first propose a triangulation-based method to triangulate it to different triangle meshes. Then, we use a depth-first search scheme to find a spanning tree as its skeleton feature from the set of triangulation meshes. The triangulation-based scheme to extract important skeleton features has more robustness and effectiveness than other silhouette-based approaches. Then, different body parts can be roughly extracted by removing all the branching points from the spanning tree. A model-driven technique is then proposed for more accurately segmenting a human body into semantic parts. This technique uses the concept of Gaussian mixture model (GMM) to model different visual properties of different body parts. Then, a suitable segmentation scheme can be driven by classifying these models using their skeletons. Experimental results have proved that the proposed method is robust, accurate, and powerful in body part segmentation\",\"PeriodicalId\":236033,\"journal\":{\"name\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSMCA.2010.2040272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMCA.2010.2040272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Segmentation of Human Body Parts Using Deformable Triangulation
This paper presents a new segmentation algorithm to segment a body posture into different body parts using the technique of triangulation. For well analyzing each posture, we first propose a triangulation-based method to triangulate it to different triangle meshes. Then, we use a depth-first search scheme to find a spanning tree as its skeleton feature from the set of triangulation meshes. The triangulation-based scheme to extract important skeleton features has more robustness and effectiveness than other silhouette-based approaches. Then, different body parts can be roughly extracted by removing all the branching points from the spanning tree. A model-driven technique is then proposed for more accurately segmenting a human body into semantic parts. This technique uses the concept of Gaussian mixture model (GMM) to model different visual properties of different body parts. Then, a suitable segmentation scheme can be driven by classifying these models using their skeletons. Experimental results have proved that the proposed method is robust, accurate, and powerful in body part segmentation