Zhaoxin Chen, É. Anquetil, C. Viard-Gaudin, H. Mouchère
{"title":"基于多分类器拒绝选项的手写手势早期识别","authors":"Zhaoxin Chen, É. Anquetil, C. Viard-Gaudin, H. Mouchère","doi":"10.1109/ICDAR.2017.43","DOIUrl":null,"url":null,"abstract":"In this paper a multi-classifier method for early recognition of handwritten gesture is presented. Unlike the other works which study the early recognition problem related to the time, we propose to make the recognition according to the quantity of incremental drawing of handwritten gestures. We train a segment length based multi-classifier for the task of recognizing the handwritten touch gesture as early as possible. To deal with potential similar parts at the beginning of different gestures, we introduce a reject option to postpone the decision until ambiguity persists. We report results on two freely available datasets: MGSet and ILG. These results demonstrate the improvement we obtained by using the proposed reject option for the early recognition of handwritten gestures.","PeriodicalId":433676,"journal":{"name":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Early Recognition of Handwritten Gestures Based on Multi-Classifier Reject Option\",\"authors\":\"Zhaoxin Chen, É. Anquetil, C. Viard-Gaudin, H. Mouchère\",\"doi\":\"10.1109/ICDAR.2017.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a multi-classifier method for early recognition of handwritten gesture is presented. Unlike the other works which study the early recognition problem related to the time, we propose to make the recognition according to the quantity of incremental drawing of handwritten gestures. We train a segment length based multi-classifier for the task of recognizing the handwritten touch gesture as early as possible. To deal with potential similar parts at the beginning of different gestures, we introduce a reject option to postpone the decision until ambiguity persists. We report results on two freely available datasets: MGSet and ILG. These results demonstrate the improvement we obtained by using the proposed reject option for the early recognition of handwritten gestures.\",\"PeriodicalId\":433676,\"journal\":{\"name\":\"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2017.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2017.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Early Recognition of Handwritten Gestures Based on Multi-Classifier Reject Option
In this paper a multi-classifier method for early recognition of handwritten gesture is presented. Unlike the other works which study the early recognition problem related to the time, we propose to make the recognition according to the quantity of incremental drawing of handwritten gestures. We train a segment length based multi-classifier for the task of recognizing the handwritten touch gesture as early as possible. To deal with potential similar parts at the beginning of different gestures, we introduce a reject option to postpone the decision until ambiguity persists. We report results on two freely available datasets: MGSet and ILG. These results demonstrate the improvement we obtained by using the proposed reject option for the early recognition of handwritten gestures.