{"title":"Banach格上的正则算子","authors":"O. Gok","doi":"10.36120/2587-3644.v14i2.53-56","DOIUrl":null,"url":null,"abstract":"Let $E$ and $F$ be Banach lattices and $X$ and $Y$ be Banach spaces. A linear operator $T: E \\rightarrow F$ is called regular if it is the difference of two positive operators. $L_{r}(E,F)$ denotes the vector space of all regular operators from $E$ into $F$. A continuous linear operator $T: E \\rightarrow X$ is called $M$-weakly compact operator if for every disjoint bounded sequence $(x_{n})$ in $E$, we have $lim_{n \\rightarrow\\infty} \\| Tx_{n} \\| =0$. $W^{r}_{M}(E,F)$ denotes the regular $M$-weakly compact operators from $E$ into $F$. This paper is devoted to the study of regular operators and $M$-weakly compact operators on Banach lattices. We show that $F$ has a b-property if and only if $L_{r}(E,F)$ has b-property. Also, $W^{r}_{M}(E,F)$ is a $KB$-space if and only if $F$ is a $KB$-space.","PeriodicalId":340784,"journal":{"name":"Acta et commentationes: Ştiinţe Exacte şi ale Naturii","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On regular operators on Banach lattices\",\"authors\":\"O. Gok\",\"doi\":\"10.36120/2587-3644.v14i2.53-56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $E$ and $F$ be Banach lattices and $X$ and $Y$ be Banach spaces. A linear operator $T: E \\\\rightarrow F$ is called regular if it is the difference of two positive operators. $L_{r}(E,F)$ denotes the vector space of all regular operators from $E$ into $F$. A continuous linear operator $T: E \\\\rightarrow X$ is called $M$-weakly compact operator if for every disjoint bounded sequence $(x_{n})$ in $E$, we have $lim_{n \\\\rightarrow\\\\infty} \\\\| Tx_{n} \\\\| =0$. $W^{r}_{M}(E,F)$ denotes the regular $M$-weakly compact operators from $E$ into $F$. This paper is devoted to the study of regular operators and $M$-weakly compact operators on Banach lattices. We show that $F$ has a b-property if and only if $L_{r}(E,F)$ has b-property. Also, $W^{r}_{M}(E,F)$ is a $KB$-space if and only if $F$ is a $KB$-space.\",\"PeriodicalId\":340784,\"journal\":{\"name\":\"Acta et commentationes: Ştiinţe Exacte şi ale Naturii\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et commentationes: Ştiinţe Exacte şi ale Naturii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36120/2587-3644.v14i2.53-56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et commentationes: Ştiinţe Exacte şi ale Naturii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36120/2587-3644.v14i2.53-56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设$E$和$F$为巴拿赫格$X$和$Y$为巴拿赫空间。如果线性算子$T: E \rightarrow F$是两个正算子的差,则称为正则算子。$L_{r}(E,F)$表示从$E$到$F$的所有正则算子的向量空间。连续线性算子$T: E \rightarrow X$称为$M$ -弱紧算子,如果对于$E$中的每一个不相交有界序列$(x_{n})$,我们有$lim_{n \rightarrow\infty} \| Tx_{n} \| =0$。$W^{r}_{M}(E,F)$表示从$E$到$F$的正则$M$ -弱紧化算子。本文研究了Banach格上的正则算子和$M$ -弱紧算子。我们证明$F$有b性质当且仅当$L_{r}(E,F)$有b性质。同样,$W^{r}_{M}(E,F)$是一个$KB$ -space当且仅当$F$是一个$KB$ -space。
Let $E$ and $F$ be Banach lattices and $X$ and $Y$ be Banach spaces. A linear operator $T: E \rightarrow F$ is called regular if it is the difference of two positive operators. $L_{r}(E,F)$ denotes the vector space of all regular operators from $E$ into $F$. A continuous linear operator $T: E \rightarrow X$ is called $M$-weakly compact operator if for every disjoint bounded sequence $(x_{n})$ in $E$, we have $lim_{n \rightarrow\infty} \| Tx_{n} \| =0$. $W^{r}_{M}(E,F)$ denotes the regular $M$-weakly compact operators from $E$ into $F$. This paper is devoted to the study of regular operators and $M$-weakly compact operators on Banach lattices. We show that $F$ has a b-property if and only if $L_{r}(E,F)$ has b-property. Also, $W^{r}_{M}(E,F)$ is a $KB$-space if and only if $F$ is a $KB$-space.