基于深度特征提取的甲状腺结节良性预测

XueYan Mei, Xiaomeng Dong, T. Deyer, Jingyi Zeng, T. Trafalis, Yan Fang
{"title":"基于深度特征提取的甲状腺结节良性预测","authors":"XueYan Mei, Xiaomeng Dong, T. Deyer, Jingyi Zeng, T. Trafalis, Yan Fang","doi":"10.1109/BIBE.2017.00-48","DOIUrl":null,"url":null,"abstract":"Thyroid nodules are a common pathology which are fortunately usually benign. However, current image characterization is limited in accurately differentiating benign from malignant nodules. Consequently, a percutaneous biopsy is often necessary to determine if a nodule is benign or malignant. We hypothesized that deep learning in conjunction with professional image characterization could improve nodule characterization and reduce benign biopsies. We extracted our features using convolutional auto-encoders, local binary patterns as well as histogram of oriented gradients descriptors in association with medical professional thyroid image characterization. The experiment showed the classifiers using these features can improve negative predictive value of thyroid nodule evaluation using ultrasound.","PeriodicalId":262603,"journal":{"name":"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Thyroid Nodule Benignty Prediction by Deep Feature Extraction\",\"authors\":\"XueYan Mei, Xiaomeng Dong, T. Deyer, Jingyi Zeng, T. Trafalis, Yan Fang\",\"doi\":\"10.1109/BIBE.2017.00-48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thyroid nodules are a common pathology which are fortunately usually benign. However, current image characterization is limited in accurately differentiating benign from malignant nodules. Consequently, a percutaneous biopsy is often necessary to determine if a nodule is benign or malignant. We hypothesized that deep learning in conjunction with professional image characterization could improve nodule characterization and reduce benign biopsies. We extracted our features using convolutional auto-encoders, local binary patterns as well as histogram of oriented gradients descriptors in association with medical professional thyroid image characterization. The experiment showed the classifiers using these features can improve negative predictive value of thyroid nodule evaluation using ultrasound.\",\"PeriodicalId\":262603,\"journal\":{\"name\":\"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2017.00-48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2017.00-48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

甲状腺结节是一种常见的病理,幸运的是通常是良性的。然而,目前的图像表征在准确区分良性和恶性结节方面受到限制。因此,通常需要经皮活检来确定结节是良性还是恶性。我们假设深度学习与专业图像表征相结合可以改善结节表征并减少良性活检。我们使用卷积自编码器、局部二值模式以及与医学专业甲状腺图像表征相关的定向梯度描述符直方图提取特征。实验表明,利用这些特征的分类器可以提高超声诊断甲状腺结节的阴性预测值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thyroid Nodule Benignty Prediction by Deep Feature Extraction
Thyroid nodules are a common pathology which are fortunately usually benign. However, current image characterization is limited in accurately differentiating benign from malignant nodules. Consequently, a percutaneous biopsy is often necessary to determine if a nodule is benign or malignant. We hypothesized that deep learning in conjunction with professional image characterization could improve nodule characterization and reduce benign biopsies. We extracted our features using convolutional auto-encoders, local binary patterns as well as histogram of oriented gradients descriptors in association with medical professional thyroid image characterization. The experiment showed the classifiers using these features can improve negative predictive value of thyroid nodule evaluation using ultrasound.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信