17.5线性调幅后向散射的0.8mm3超声植入式无线神经记录系统

M. M. Ghanbari, David K. Piech, Konlin Shen, Sina Faraji Alamouti, Cem Yalcin, Benjamin C. Johnson, J. Carmena, M. Maharbiz, R. Muller
{"title":"17.5线性调幅后向散射的0.8mm3超声植入式无线神经记录系统","authors":"M. M. Ghanbari, David K. Piech, Konlin Shen, Sina Faraji Alamouti, Cem Yalcin, Benjamin C. Johnson, J. Carmena, M. Maharbiz, R. Muller","doi":"10.1109/ISSCC.2019.8662295","DOIUrl":null,"url":null,"abstract":"Miniaturization of implantable neural recording systems to micron-scale volumes will enable minimally invasive implantation and alleviate cortical scarring, gliosis, and resulting signal degradation. Ultrasound (US) power transmission has been demonstrated to have high efficiency and low tissue attenuation for mm-scale implants at depth in tissue [1, 2, 3], but has not been demonstrated with precision recording circuitry. We present an US implantable wireless neural recording system scaled to 0.8mm3, verified to safely operate at 5cm depth with state of the art neural recording performance an average circuit power dissipation of 13μW, and 28.8μW including power conversion efficiency. Sub-mm scale is achieved through single-link power and communication on a single piezocrystal (Lead Zirconate Titanate, PZT) utilizing linear analog backscattering, small die area, and eliminating all other off-chip components.","PeriodicalId":265551,"journal":{"name":"2019 IEEE International Solid- State Circuits Conference - (ISSCC)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"17.5 A 0.8mm3 Ultrasonic Implantable Wireless Neural Recording System With Linear AM Backscattering\",\"authors\":\"M. M. Ghanbari, David K. Piech, Konlin Shen, Sina Faraji Alamouti, Cem Yalcin, Benjamin C. Johnson, J. Carmena, M. Maharbiz, R. Muller\",\"doi\":\"10.1109/ISSCC.2019.8662295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Miniaturization of implantable neural recording systems to micron-scale volumes will enable minimally invasive implantation and alleviate cortical scarring, gliosis, and resulting signal degradation. Ultrasound (US) power transmission has been demonstrated to have high efficiency and low tissue attenuation for mm-scale implants at depth in tissue [1, 2, 3], but has not been demonstrated with precision recording circuitry. We present an US implantable wireless neural recording system scaled to 0.8mm3, verified to safely operate at 5cm depth with state of the art neural recording performance an average circuit power dissipation of 13μW, and 28.8μW including power conversion efficiency. Sub-mm scale is achieved through single-link power and communication on a single piezocrystal (Lead Zirconate Titanate, PZT) utilizing linear analog backscattering, small die area, and eliminating all other off-chip components.\",\"PeriodicalId\":265551,\"journal\":{\"name\":\"2019 IEEE International Solid- State Circuits Conference - (ISSCC)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Solid- State Circuits Conference - (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2019.8662295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Solid- State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2019.8662295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

将植入式神经记录系统小型化到微米级的体积将使微创植入成为可能,减轻皮质瘢痕、神经胶质瘤和由此产生的信号退化。超声(US)功率传输已被证明在组织深处的mm级植入物中具有高效率和低组织衰减[1,2,3],但尚未被证明具有精确的记录电路。我们提出了一种美国植入式无线神经记录系统,该系统的尺寸为0.8mm3,经验证可在5cm深度下安全工作,其神经记录性能为平均电路功耗13μW,包括功率转换效率为28.8μW。亚毫米级是通过单个压电晶体(锆钛酸铅,PZT)上的单链路电源和通信实现的,利用线性模拟后向散射,小模具面积,消除所有其他片外组件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
17.5 A 0.8mm3 Ultrasonic Implantable Wireless Neural Recording System With Linear AM Backscattering
Miniaturization of implantable neural recording systems to micron-scale volumes will enable minimally invasive implantation and alleviate cortical scarring, gliosis, and resulting signal degradation. Ultrasound (US) power transmission has been demonstrated to have high efficiency and low tissue attenuation for mm-scale implants at depth in tissue [1, 2, 3], but has not been demonstrated with precision recording circuitry. We present an US implantable wireless neural recording system scaled to 0.8mm3, verified to safely operate at 5cm depth with state of the art neural recording performance an average circuit power dissipation of 13μW, and 28.8μW including power conversion efficiency. Sub-mm scale is achieved through single-link power and communication on a single piezocrystal (Lead Zirconate Titanate, PZT) utilizing linear analog backscattering, small die area, and eliminating all other off-chip components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信