基于深度学习的无视角路面损伤检测

Jia-Li Yin, Tzu-Hsuan Peng, Jo-Lan Kuan, Bo-Hao Chen
{"title":"基于深度学习的无视角路面损伤检测","authors":"Jia-Li Yin, Tzu-Hsuan Peng, Jo-Lan Kuan, Bo-Hao Chen","doi":"10.1109/GCCE46687.2019.9015591","DOIUrl":null,"url":null,"abstract":"This paper introduces a pavement distress detection framework based on a devised deep convolutional neural network for improving the automatic driving safety on intelligent vehicles. In contrast to the conventional detection methods by utilizing multiple sensors, the proposed framework directly profiles the features of road conditions from the incoming road images as the perspective maps. Experiment results demonstrate that the proposed framework achieves superior representation of pavement distress with higher accuracy than that made by the baseline convolutional neural network.","PeriodicalId":303502,"journal":{"name":"2019 IEEE 8th Global Conference on Consumer Electronics (GCCE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards Perspective-Free Pavement Distress Detection via Deep Learning\",\"authors\":\"Jia-Li Yin, Tzu-Hsuan Peng, Jo-Lan Kuan, Bo-Hao Chen\",\"doi\":\"10.1109/GCCE46687.2019.9015591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a pavement distress detection framework based on a devised deep convolutional neural network for improving the automatic driving safety on intelligent vehicles. In contrast to the conventional detection methods by utilizing multiple sensors, the proposed framework directly profiles the features of road conditions from the incoming road images as the perspective maps. Experiment results demonstrate that the proposed framework achieves superior representation of pavement distress with higher accuracy than that made by the baseline convolutional neural network.\",\"PeriodicalId\":303502,\"journal\":{\"name\":\"2019 IEEE 8th Global Conference on Consumer Electronics (GCCE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 8th Global Conference on Consumer Electronics (GCCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCCE46687.2019.9015591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 8th Global Conference on Consumer Electronics (GCCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCCE46687.2019.9015591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为提高智能汽车的自动驾驶安全性,提出了一种基于深度卷积神经网络的路面破损检测框架。与传统的多传感器检测方法不同,该框架直接从输入的道路图像中提取路况特征作为透视图。实验结果表明,与基线卷积神经网络相比,该框架能更好地表征路面损伤,且准确率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Perspective-Free Pavement Distress Detection via Deep Learning
This paper introduces a pavement distress detection framework based on a devised deep convolutional neural network for improving the automatic driving safety on intelligent vehicles. In contrast to the conventional detection methods by utilizing multiple sensors, the proposed framework directly profiles the features of road conditions from the incoming road images as the perspective maps. Experiment results demonstrate that the proposed framework achieves superior representation of pavement distress with higher accuracy than that made by the baseline convolutional neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信