从强化学习中提取知识

R. Sun
{"title":"从强化学习中提取知识","authors":"R. Sun","doi":"10.1109/IJCNN.1999.833476","DOIUrl":null,"url":null,"abstract":"This paper deals with knowledge extraction from reinforcement learners. It addresses two approaches towards knowledge extraction: the extraction of explicit, symbolic rules front neural reinforcement learners; and the extraction of complete plans from such learners. The advantages of such knowledge extraction include: the improvement of learning (especially with the rule extraction approach); and the improvement of the usability of results of learning.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Knowledge extraction from reinforcement learning\",\"authors\":\"R. Sun\",\"doi\":\"10.1109/IJCNN.1999.833476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with knowledge extraction from reinforcement learners. It addresses two approaches towards knowledge extraction: the extraction of explicit, symbolic rules front neural reinforcement learners; and the extraction of complete plans from such learners. The advantages of such knowledge extraction include: the improvement of learning (especially with the rule extraction approach); and the improvement of the usability of results of learning.\",\"PeriodicalId\":157719,\"journal\":{\"name\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1999.833476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.833476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文主要研究强化学习器的知识提取问题。它解决了两种知识提取的方法:在神经强化学习器前提取明确的符号规则;以及从这些学习者中提取完整的计划。这种知识提取的优点包括:改进了学习(特别是使用规则提取方法);提高了学习结果的可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knowledge extraction from reinforcement learning
This paper deals with knowledge extraction from reinforcement learners. It addresses two approaches towards knowledge extraction: the extraction of explicit, symbolic rules front neural reinforcement learners; and the extraction of complete plans from such learners. The advantages of such knowledge extraction include: the improvement of learning (especially with the rule extraction approach); and the improvement of the usability of results of learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信