{"title":"半/非参数条件矩模型的Sieve Wald和QLR推论","authors":"Xiaohong Chen, Demian Pouzo","doi":"10.2139/SSRN.2518456","DOIUrl":null,"url":null,"abstract":"This paper considers inference on functionals of semi/nonparametric conditional moment restrictions with possibly nonsmooth generalized residuals, which include all of the (nonlinear) nonparametric instrumental variables (IV) as special cases. These models are often ill-posed and hence it is difficult to verify whether a (possibly nonlinear) functional is root-n estimable or not. We provide computationally simple, unified inference procedures that are asymptotically valid regardless of whether a functional is root-n estimable or not. We establish the following new useful results: (1) the asymptotic normality of a plug-in penalized sieve minimum distance (PSMD) estimator of a (possibly nonlinear) functional; (2) the consistency of simple sieve variance estimators for the plug-in PSMD estimator, and hence the asymptotic chi-square distribution of the sieve Wald statistic; (3) the asymptotic chi-square distribution of an optimally weighted sieve quasi likelihood ratio (QLR) test under the null hypothesis; (4) the asymptotic tight distribution of a non-optimally weighted sieve QLR statistic under the null; (5) the consistency of generalized residual bootstrap sieve Wald and QLR tests; (6) local power properties of sieve Wald and QLR tests and of their bootstrap versions; (7) asymptotic properties of sieve Wald and SQLR for functionals of increasing dimension. Simulation studies and an empirical illustration of a nonparametric quantile IV regression are presented.","PeriodicalId":320844,"journal":{"name":"PSN: Econometrics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"107","resultStr":"{\"title\":\"Sieve Wald and QLR Inferences on Semi/Nonparametric Conditional Moment Models\",\"authors\":\"Xiaohong Chen, Demian Pouzo\",\"doi\":\"10.2139/SSRN.2518456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers inference on functionals of semi/nonparametric conditional moment restrictions with possibly nonsmooth generalized residuals, which include all of the (nonlinear) nonparametric instrumental variables (IV) as special cases. These models are often ill-posed and hence it is difficult to verify whether a (possibly nonlinear) functional is root-n estimable or not. We provide computationally simple, unified inference procedures that are asymptotically valid regardless of whether a functional is root-n estimable or not. We establish the following new useful results: (1) the asymptotic normality of a plug-in penalized sieve minimum distance (PSMD) estimator of a (possibly nonlinear) functional; (2) the consistency of simple sieve variance estimators for the plug-in PSMD estimator, and hence the asymptotic chi-square distribution of the sieve Wald statistic; (3) the asymptotic chi-square distribution of an optimally weighted sieve quasi likelihood ratio (QLR) test under the null hypothesis; (4) the asymptotic tight distribution of a non-optimally weighted sieve QLR statistic under the null; (5) the consistency of generalized residual bootstrap sieve Wald and QLR tests; (6) local power properties of sieve Wald and QLR tests and of their bootstrap versions; (7) asymptotic properties of sieve Wald and SQLR for functionals of increasing dimension. Simulation studies and an empirical illustration of a nonparametric quantile IV regression are presented.\",\"PeriodicalId\":320844,\"journal\":{\"name\":\"PSN: Econometrics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"107\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PSN: Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/SSRN.2518456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/SSRN.2518456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sieve Wald and QLR Inferences on Semi/Nonparametric Conditional Moment Models
This paper considers inference on functionals of semi/nonparametric conditional moment restrictions with possibly nonsmooth generalized residuals, which include all of the (nonlinear) nonparametric instrumental variables (IV) as special cases. These models are often ill-posed and hence it is difficult to verify whether a (possibly nonlinear) functional is root-n estimable or not. We provide computationally simple, unified inference procedures that are asymptotically valid regardless of whether a functional is root-n estimable or not. We establish the following new useful results: (1) the asymptotic normality of a plug-in penalized sieve minimum distance (PSMD) estimator of a (possibly nonlinear) functional; (2) the consistency of simple sieve variance estimators for the plug-in PSMD estimator, and hence the asymptotic chi-square distribution of the sieve Wald statistic; (3) the asymptotic chi-square distribution of an optimally weighted sieve quasi likelihood ratio (QLR) test under the null hypothesis; (4) the asymptotic tight distribution of a non-optimally weighted sieve QLR statistic under the null; (5) the consistency of generalized residual bootstrap sieve Wald and QLR tests; (6) local power properties of sieve Wald and QLR tests and of their bootstrap versions; (7) asymptotic properties of sieve Wald and SQLR for functionals of increasing dimension. Simulation studies and an empirical illustration of a nonparametric quantile IV regression are presented.