一种基于随机树的血压估计算法

Andrea Tiloca, G. Pagana, D. Demarchi
{"title":"一种基于随机树的血压估计算法","authors":"Andrea Tiloca, G. Pagana, D. Demarchi","doi":"10.1109/IMBIoC47321.2020.9385038","DOIUrl":null,"url":null,"abstract":"Machine learning algorithms shown great potential in medical applications. This paper shows the use of it for noninvasive estimation of blood pressure through systems based on the unsupervised collection of signals. Our work is based on the study of morphology and timing characteristics of ECG and PPG signals like Pulse Transit Time, Heart Rate and others showed in this paper. We implement Random Forest regression algorithm to reach the final result of cuff-less Blood Pressure (BP) estimation with RMS error of 13 mmHg for SBP and 12.89 mmHg for DBP.","PeriodicalId":297049,"journal":{"name":"2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Random Tree Based Algorithm for Blood Pressure Estimation\",\"authors\":\"Andrea Tiloca, G. Pagana, D. Demarchi\",\"doi\":\"10.1109/IMBIoC47321.2020.9385038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning algorithms shown great potential in medical applications. This paper shows the use of it for noninvasive estimation of blood pressure through systems based on the unsupervised collection of signals. Our work is based on the study of morphology and timing characteristics of ECG and PPG signals like Pulse Transit Time, Heart Rate and others showed in this paper. We implement Random Forest regression algorithm to reach the final result of cuff-less Blood Pressure (BP) estimation with RMS error of 13 mmHg for SBP and 12.89 mmHg for DBP.\",\"PeriodicalId\":297049,\"journal\":{\"name\":\"2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMBIoC47321.2020.9385038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMBIoC47321.2020.9385038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

机器学习算法在医学应用中显示出巨大的潜力。本文展示了通过基于无监督信号采集的系统,将其用于无创血压估计。我们的工作是基于研究心电图和PPG信号的形态和时间特征,如脉冲传递时间,心率等。我们采用随机森林回归算法得到无袖带血压(BP)的最终估计结果,收缩压的均方根误差为13 mmHg,舒张压的均方根误差为12.89 mmHg。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Random Tree Based Algorithm for Blood Pressure Estimation
Machine learning algorithms shown great potential in medical applications. This paper shows the use of it for noninvasive estimation of blood pressure through systems based on the unsupervised collection of signals. Our work is based on the study of morphology and timing characteristics of ECG and PPG signals like Pulse Transit Time, Heart Rate and others showed in this paper. We implement Random Forest regression algorithm to reach the final result of cuff-less Blood Pressure (BP) estimation with RMS error of 13 mmHg for SBP and 12.89 mmHg for DBP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信