纳米流体的传输和纳米乳液的形成

P. Chando, S. S. Ray, A. Yarin
{"title":"纳米流体的传输和纳米乳液的形成","authors":"P. Chando, S. S. Ray, A. Yarin","doi":"10.5210/JUR.V2I1.7467","DOIUrl":null,"url":null,"abstract":"The focus of this research is to study fluidic transport through carbon nanotubes. The nanotubes studied were formed by electrospinning Polycaplrolactone (PCL) nanofibers and then using them as channel templates in colyacrylamide blocks which were carbonized. A pressure driven flow is initiated through the nanochannels and the rate of emulsion formation is recorded with a CCD camera. Theoretical calculations are conducted for nanochannels because in many experiments, the nanochannels studied have two-phase flows, which make direct application of Poiseuille law impossible. The model used for the calculations is a slit with two fluid layers in between. In particular, in many experiments, decane-air system is of interest. The calculations are carried out using the Navier-Stokes equations. The results of the model are used to evaluate experimental volumetric flow rates and find the distribution of air and decane in the nanochannels.","PeriodicalId":426348,"journal":{"name":"The Journal of Undergraduate Research at the University of Illinois at Chicago","volume":"115 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nanofluidic transport and formation of nano-emulsions\",\"authors\":\"P. Chando, S. S. Ray, A. Yarin\",\"doi\":\"10.5210/JUR.V2I1.7467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The focus of this research is to study fluidic transport through carbon nanotubes. The nanotubes studied were formed by electrospinning Polycaplrolactone (PCL) nanofibers and then using them as channel templates in colyacrylamide blocks which were carbonized. A pressure driven flow is initiated through the nanochannels and the rate of emulsion formation is recorded with a CCD camera. Theoretical calculations are conducted for nanochannels because in many experiments, the nanochannels studied have two-phase flows, which make direct application of Poiseuille law impossible. The model used for the calculations is a slit with two fluid layers in between. In particular, in many experiments, decane-air system is of interest. The calculations are carried out using the Navier-Stokes equations. The results of the model are used to evaluate experimental volumetric flow rates and find the distribution of air and decane in the nanochannels.\",\"PeriodicalId\":426348,\"journal\":{\"name\":\"The Journal of Undergraduate Research at the University of Illinois at Chicago\",\"volume\":\"115 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Undergraduate Research at the University of Illinois at Chicago\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5210/JUR.V2I1.7467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Undergraduate Research at the University of Illinois at Chicago","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5210/JUR.V2I1.7467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究的重点是研究流体在碳纳米管中的传输。所研究的纳米管是通过静电纺丝聚内酯(PCL)纳米纤维形成的,然后将其作为通道模板应用于碳化的聚丙烯酰胺块上。压力驱动的流体通过纳米通道启动,并用CCD相机记录乳剂形成的速率。由于在许多实验中所研究的纳米通道具有两相流动,使得泊泽维尔定律无法直接应用,因此对纳米通道进行了理论计算。用于计算的模型是一个狭缝,中间有两个流体层。特别是在许多实验中,癸烷-空气系统引起了人们的兴趣。计算是用纳维-斯托克斯方程进行的。该模型的结果用于计算实验体积流率,并找到空气和癸烷在纳米通道中的分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanofluidic transport and formation of nano-emulsions
The focus of this research is to study fluidic transport through carbon nanotubes. The nanotubes studied were formed by electrospinning Polycaplrolactone (PCL) nanofibers and then using them as channel templates in colyacrylamide blocks which were carbonized. A pressure driven flow is initiated through the nanochannels and the rate of emulsion formation is recorded with a CCD camera. Theoretical calculations are conducted for nanochannels because in many experiments, the nanochannels studied have two-phase flows, which make direct application of Poiseuille law impossible. The model used for the calculations is a slit with two fluid layers in between. In particular, in many experiments, decane-air system is of interest. The calculations are carried out using the Navier-Stokes equations. The results of the model are used to evaluate experimental volumetric flow rates and find the distribution of air and decane in the nanochannels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信