基于智能视频分析的跌倒检测研究

Y. T. Ngo, Nguyen Ha Thanh, T. V. Pham
{"title":"基于智能视频分析的跌倒检测研究","authors":"Y. T. Ngo, Nguyen Ha Thanh, T. V. Pham","doi":"10.1109/ATC.2012.6404242","DOIUrl":null,"url":null,"abstract":"In this paper, a fall detection algorithm has been built using intelligent analysis of captured video signal. Five geometrical features are extracted from input video signal and are recognized by a trained feed-forward neural network. Experimental results on our self-built database show that the proposed fall detection system can detect fall events with quite high precision under different falling conditions.","PeriodicalId":282211,"journal":{"name":"The 2012 International Conference on Advanced Technologies for Communications","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Study on fall detection based on intelligent video analysis\",\"authors\":\"Y. T. Ngo, Nguyen Ha Thanh, T. V. Pham\",\"doi\":\"10.1109/ATC.2012.6404242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a fall detection algorithm has been built using intelligent analysis of captured video signal. Five geometrical features are extracted from input video signal and are recognized by a trained feed-forward neural network. Experimental results on our self-built database show that the proposed fall detection system can detect fall events with quite high precision under different falling conditions.\",\"PeriodicalId\":282211,\"journal\":{\"name\":\"The 2012 International Conference on Advanced Technologies for Communications\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2012 International Conference on Advanced Technologies for Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATC.2012.6404242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2012 International Conference on Advanced Technologies for Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATC.2012.6404242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文通过对捕获的视频信号进行智能分析,建立了一种跌倒检测算法。从输入的视频信号中提取5个几何特征,并通过训练好的前馈神经网络进行识别。在自建数据库上的实验结果表明,所提出的跌落检测系统可以在不同的跌落条件下以较高的精度检测出跌落事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on fall detection based on intelligent video analysis
In this paper, a fall detection algorithm has been built using intelligent analysis of captured video signal. Five geometrical features are extracted from input video signal and are recognized by a trained feed-forward neural network. Experimental results on our self-built database show that the proposed fall detection system can detect fall events with quite high precision under different falling conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信