由地震和微震观测得到的阿南津镇地面运动特征

K. Asano, T. Iwata, A. Iwaki, M. Kuriyama, W. Suzuki
{"title":"由地震和微震观测得到的阿南津镇地面运动特征","authors":"K. Asano, T. Iwata, A. Iwaki, M. Kuriyama, W. Suzuki","doi":"10.4294/ZISIN.62.121","DOIUrl":null,"url":null,"abstract":"During the 2007 Noto Hanto earthquake, a K-NET station ISK005, which is located in Anamizu town and approximately 19 km far from the epicenter, recorded the ground velocity larger than 100 cm/s. A set of observational study is carried out to investigate spatial variation of ground motion amplification characteristics in Anamizu town. Firstly, the spatial variation of the amplification was observed by aftershock observations along a temporary linear seismic array across Anamizu town. In the center of the town, the spectral amplification factor is 10 to 20 between 1 Hz and 2 Hz with respect to the rock site. Then, dense single-station microtremor observations were carried out at 147 sites with average spacing of 100 m in Anamizu town to see the spatial variation in thickness of low-velocity layers. The peak frequency of the microtremor H/V spectral ratio varies from 0.8 to 2.0 Hz in the town. The velocity structure model of shallow portion in Anamizu town is estimated from the mircrotremor H/V spectral ratios. The thickness of low-velocity layers (VS =70 to 100 m/s) changes along the Omata and the Manai rivers. Finally, a three-dimensional ground motion simulation is conducted using the obtained velocity structure model in order to see relationship between shallow sedimentary layers and ground motion amplification in Anamizu town. The peak velocity in the frequency range below 2.5 Hz is three or four times larger in the area around ISK005, where the thickness of low-velocity layers is approximately 10 to 25 m, than that in the rock side. It could be concluded that the ground motion amplification characteristics in the frequency range between 1 Hz and 2 Hz is mainly controlled by the existence of such low-velocity sedimentary layers.","PeriodicalId":332254,"journal":{"name":"Journal of the Seismological Society of Japan","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ground Motion Characteristics in Anamizu Town Obtained from Earthquake and Microtremor Observations\",\"authors\":\"K. Asano, T. Iwata, A. Iwaki, M. Kuriyama, W. Suzuki\",\"doi\":\"10.4294/ZISIN.62.121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the 2007 Noto Hanto earthquake, a K-NET station ISK005, which is located in Anamizu town and approximately 19 km far from the epicenter, recorded the ground velocity larger than 100 cm/s. A set of observational study is carried out to investigate spatial variation of ground motion amplification characteristics in Anamizu town. Firstly, the spatial variation of the amplification was observed by aftershock observations along a temporary linear seismic array across Anamizu town. In the center of the town, the spectral amplification factor is 10 to 20 between 1 Hz and 2 Hz with respect to the rock site. Then, dense single-station microtremor observations were carried out at 147 sites with average spacing of 100 m in Anamizu town to see the spatial variation in thickness of low-velocity layers. The peak frequency of the microtremor H/V spectral ratio varies from 0.8 to 2.0 Hz in the town. The velocity structure model of shallow portion in Anamizu town is estimated from the mircrotremor H/V spectral ratios. The thickness of low-velocity layers (VS =70 to 100 m/s) changes along the Omata and the Manai rivers. Finally, a three-dimensional ground motion simulation is conducted using the obtained velocity structure model in order to see relationship between shallow sedimentary layers and ground motion amplification in Anamizu town. The peak velocity in the frequency range below 2.5 Hz is three or four times larger in the area around ISK005, where the thickness of low-velocity layers is approximately 10 to 25 m, than that in the rock side. It could be concluded that the ground motion amplification characteristics in the frequency range between 1 Hz and 2 Hz is mainly controlled by the existence of such low-velocity sedimentary layers.\",\"PeriodicalId\":332254,\"journal\":{\"name\":\"Journal of the Seismological Society of Japan\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Seismological Society of Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4294/ZISIN.62.121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Seismological Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4294/ZISIN.62.121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在2007年的北阪神地震中,位于距震中约19公里的Anamizu镇的K-NET站ISK005记录了超过100厘米/秒的地面速度。对阿那米津镇地震动放大特征的空间变化进行了观测研究。首先,利用横贯阿那米津镇的临时线性地震阵进行余震观测,观察了地震放大的空间变化。在城镇中心,相对于岩石场地,光谱放大系数在1 Hz和2 Hz之间为10到20。然后,在Anamizu镇147个平均间距为100 m的站点进行密集单站微震观测,观察低速层厚度的空间变化。微震H/V谱比峰值频率在0.8 ~ 2.0 Hz之间。利用微震H/V谱比估计了阿那米津镇浅部的速度结构模型。低速层厚度(VS =70 ~ 100 m/s)沿Omata河和Manai河变化。最后,利用得到的速度结构模型进行了三维地震动模拟,以了解浅层沉积层与阿纳米津镇地震动放大的关系。在ISK005附近,低速层厚度约为10 ~ 25 m, 2.5 Hz以下频率范围内的峰值速度比岩石侧的峰值速度大3 ~ 4倍。在1 ~ 2 Hz频率范围内的地震动放大特征主要受这种低速沉积层的存在控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ground Motion Characteristics in Anamizu Town Obtained from Earthquake and Microtremor Observations
During the 2007 Noto Hanto earthquake, a K-NET station ISK005, which is located in Anamizu town and approximately 19 km far from the epicenter, recorded the ground velocity larger than 100 cm/s. A set of observational study is carried out to investigate spatial variation of ground motion amplification characteristics in Anamizu town. Firstly, the spatial variation of the amplification was observed by aftershock observations along a temporary linear seismic array across Anamizu town. In the center of the town, the spectral amplification factor is 10 to 20 between 1 Hz and 2 Hz with respect to the rock site. Then, dense single-station microtremor observations were carried out at 147 sites with average spacing of 100 m in Anamizu town to see the spatial variation in thickness of low-velocity layers. The peak frequency of the microtremor H/V spectral ratio varies from 0.8 to 2.0 Hz in the town. The velocity structure model of shallow portion in Anamizu town is estimated from the mircrotremor H/V spectral ratios. The thickness of low-velocity layers (VS =70 to 100 m/s) changes along the Omata and the Manai rivers. Finally, a three-dimensional ground motion simulation is conducted using the obtained velocity structure model in order to see relationship between shallow sedimentary layers and ground motion amplification in Anamizu town. The peak velocity in the frequency range below 2.5 Hz is three or four times larger in the area around ISK005, where the thickness of low-velocity layers is approximately 10 to 25 m, than that in the rock side. It could be concluded that the ground motion amplification characteristics in the frequency range between 1 Hz and 2 Hz is mainly controlled by the existence of such low-velocity sedimentary layers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信