多阈值拜占庭容错

Atsuki Momose, Ling Ren
{"title":"多阈值拜占庭容错","authors":"Atsuki Momose, Ling Ren","doi":"10.1145/3460120.3484554","DOIUrl":null,"url":null,"abstract":"Classic Byzantine fault tolerant (BFT) protocols are designed for a specific timing model, most often one of the following: synchronous, asynchronous or partially synchronous. It is well known that the timing model and fault tolerance threshold present inherent trade-offs. Synchronous protocols tolerate up to n/2 Byzantine faults, while asynchronous or partially synchronous protocols tolerate only up to n/3 Byzantine faults. In this work, we generalize the fault thresholds of BFT and introduce a new problem called multi-threshold BFT. Multi-threshold BFT has four separate fault thresholds for safety and liveness under synchrony and asynchrony (or partial-synchrony), respectively. Decomposing the fault thresholds in this way allows us to design protocols that provide meaningful fault tolerance under both synchrony and asynchrony (or partial synchrony). We establish tight fault thresholds bounds for multi-threshold BFT and present protocols achieving them. As an example, we show a BFT state machine replication (SMR) protocol that tolerates up to 2n/3 faults for safety under synchrony while tolerating up to n/3 faults for other scenarios (liveness under synchrony as well as safety and liveness under partial synchrony). This is strictly stronger than classic partially synchronous SMR protocols. We also present a general framework to transform known partially synchronous or asynchronous BFT SMR protocols to additionally enjoy the optimal 2n/3 fault tolerance for safety under synchrony.","PeriodicalId":135883,"journal":{"name":"Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security","volume":"98 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Multi-Threshold Byzantine Fault Tolerance\",\"authors\":\"Atsuki Momose, Ling Ren\",\"doi\":\"10.1145/3460120.3484554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classic Byzantine fault tolerant (BFT) protocols are designed for a specific timing model, most often one of the following: synchronous, asynchronous or partially synchronous. It is well known that the timing model and fault tolerance threshold present inherent trade-offs. Synchronous protocols tolerate up to n/2 Byzantine faults, while asynchronous or partially synchronous protocols tolerate only up to n/3 Byzantine faults. In this work, we generalize the fault thresholds of BFT and introduce a new problem called multi-threshold BFT. Multi-threshold BFT has four separate fault thresholds for safety and liveness under synchrony and asynchrony (or partial-synchrony), respectively. Decomposing the fault thresholds in this way allows us to design protocols that provide meaningful fault tolerance under both synchrony and asynchrony (or partial synchrony). We establish tight fault thresholds bounds for multi-threshold BFT and present protocols achieving them. As an example, we show a BFT state machine replication (SMR) protocol that tolerates up to 2n/3 faults for safety under synchrony while tolerating up to n/3 faults for other scenarios (liveness under synchrony as well as safety and liveness under partial synchrony). This is strictly stronger than classic partially synchronous SMR protocols. We also present a general framework to transform known partially synchronous or asynchronous BFT SMR protocols to additionally enjoy the optimal 2n/3 fault tolerance for safety under synchrony.\",\"PeriodicalId\":135883,\"journal\":{\"name\":\"Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security\",\"volume\":\"98 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3460120.3484554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460120.3484554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

经典的拜占庭容错(BFT)协议是为特定的时序模型设计的,通常是以下模式之一:同步、异步或部分同步。众所周知,时序模型和容错阈值存在固有的权衡。同步协议最多允许n/2拜占庭故障,而异步或部分同步协议最多允许n/3拜占庭故障。在本文中,我们对故障阈值进行了推广,并引入了一个新的多阈值BFT问题。多阈值BFT在同步和异步(或部分同步)情况下分别具有安全性和活动性四个单独的故障阈值。以这种方式分解故障阈值使我们能够设计在同步和异步(或部分同步)下提供有意义的容错的协议。建立了多阈值BFT的严格故障阈值边界,并给出了实现该边界的协议。作为一个示例,我们展示了一个BFT状态机复制(SMR)协议,该协议在同步下允许最多2n/3个安全故障,而在其他场景(同步下的活动性以及部分同步下的安全性和活动性)中允许最多n/3个故障。这比经典的部分同步SMR协议严格地更强。我们还提出了一个通用框架来转换已知的部分同步或异步BFT SMR协议,以额外享受同步下安全性的最佳2n/3容错性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Threshold Byzantine Fault Tolerance
Classic Byzantine fault tolerant (BFT) protocols are designed for a specific timing model, most often one of the following: synchronous, asynchronous or partially synchronous. It is well known that the timing model and fault tolerance threshold present inherent trade-offs. Synchronous protocols tolerate up to n/2 Byzantine faults, while asynchronous or partially synchronous protocols tolerate only up to n/3 Byzantine faults. In this work, we generalize the fault thresholds of BFT and introduce a new problem called multi-threshold BFT. Multi-threshold BFT has four separate fault thresholds for safety and liveness under synchrony and asynchrony (or partial-synchrony), respectively. Decomposing the fault thresholds in this way allows us to design protocols that provide meaningful fault tolerance under both synchrony and asynchrony (or partial synchrony). We establish tight fault thresholds bounds for multi-threshold BFT and present protocols achieving them. As an example, we show a BFT state machine replication (SMR) protocol that tolerates up to 2n/3 faults for safety under synchrony while tolerating up to n/3 faults for other scenarios (liveness under synchrony as well as safety and liveness under partial synchrony). This is strictly stronger than classic partially synchronous SMR protocols. We also present a general framework to transform known partially synchronous or asynchronous BFT SMR protocols to additionally enjoy the optimal 2n/3 fault tolerance for safety under synchrony.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信