基于集成方法的多尺度卷积递归神经网络弱标记声事件检测

Yingmei Guo, Mingxing Xu, Zhiyong Wu, Jianming Wu, Bin Su
{"title":"基于集成方法的多尺度卷积递归神经网络弱标记声事件检测","authors":"Yingmei Guo, Mingxing Xu, Zhiyong Wu, Jianming Wu, Bin Su","doi":"10.1109/ACIIW.2019.8925176","DOIUrl":null,"url":null,"abstract":"In this paper, we describe our contributions to the challenge of detection and classification of acoustic scenes and events. We propose multi-scale convolutional recurrent neural network(Multi-scale CRNN), a novel weakly-supervised learning framework for sound event detection. By integrating information from different time resolutions, the multi-scale method can capture both the fine-grained and coarse-grained features of sound events and model the temporal dependency including fine-grained dependency and long-term dependency. Furthermore, the ensemble method proposed in the paper reduces the frame-level prediction errors using classification results. The proposed method achieves 29.2% in the event-based F1-score and 1.40 in event-based error rate in development set of DCASE2018 task4 compared to the baseline of 14.1% F-value and 1.54 error rate [1].","PeriodicalId":193568,"journal":{"name":"2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Multi-Scale Convolutional Recurrent Neural Network with Ensemble Method for Weakly Labeled Sound Event Detection\",\"authors\":\"Yingmei Guo, Mingxing Xu, Zhiyong Wu, Jianming Wu, Bin Su\",\"doi\":\"10.1109/ACIIW.2019.8925176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe our contributions to the challenge of detection and classification of acoustic scenes and events. We propose multi-scale convolutional recurrent neural network(Multi-scale CRNN), a novel weakly-supervised learning framework for sound event detection. By integrating information from different time resolutions, the multi-scale method can capture both the fine-grained and coarse-grained features of sound events and model the temporal dependency including fine-grained dependency and long-term dependency. Furthermore, the ensemble method proposed in the paper reduces the frame-level prediction errors using classification results. The proposed method achieves 29.2% in the event-based F1-score and 1.40 in event-based error rate in development set of DCASE2018 task4 compared to the baseline of 14.1% F-value and 1.54 error rate [1].\",\"PeriodicalId\":193568,\"journal\":{\"name\":\"2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACIIW.2019.8925176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIIW.2019.8925176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

在本文中,我们描述了我们对声学场景和事件的检测和分类的挑战的贡献。我们提出了一种新的用于声音事件检测的弱监督学习框架——多尺度卷积循环神经网络(multi-scale CRNN)。多尺度方法通过整合不同时间分辨率的信息,既能捕捉声音事件的细粒度特征,又能捕捉声音事件的粗粒度特征,并对声音事件的时间依赖性进行建模,包括细粒度依赖性和长期依赖性。此外,本文提出的集成方法利用分类结果降低了帧级预测误差。与基线的14.1% f值和1.54错误率相比,本文方法在DCASE2018 task4的开发集中实现了29.2%的基于事件的f1得分和1.40的基于事件的错误率[1]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Scale Convolutional Recurrent Neural Network with Ensemble Method for Weakly Labeled Sound Event Detection
In this paper, we describe our contributions to the challenge of detection and classification of acoustic scenes and events. We propose multi-scale convolutional recurrent neural network(Multi-scale CRNN), a novel weakly-supervised learning framework for sound event detection. By integrating information from different time resolutions, the multi-scale method can capture both the fine-grained and coarse-grained features of sound events and model the temporal dependency including fine-grained dependency and long-term dependency. Furthermore, the ensemble method proposed in the paper reduces the frame-level prediction errors using classification results. The proposed method achieves 29.2% in the event-based F1-score and 1.40 in event-based error rate in development set of DCASE2018 task4 compared to the baseline of 14.1% F-value and 1.54 error rate [1].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信