{"title":"海报:利用数据异构提高联邦学习的性能和可靠性","authors":"Yuanli Wang, Dhruv Kumar, A. Chandra","doi":"10.1109/SEC50012.2020.00023","DOIUrl":null,"url":null,"abstract":"Federated Learning [1] enables distributed devices to learn a shared machine learning model together, without uploading their private training data. It has received significant attention recently and has been used in mobile applications such as search suggestion [2] and object detection [3]. Federated Learning is different from distributed machine learning due to the following reasons: 1) System heterogeneity: federated learning is usually performed on devices having highly dynamic and heterogeneous network, compute, and power availability. 2) Data heterogeneity (or statistical heterogeneity): data is produced by different users on different devices, and therefore may have different statistical distribution (non-IID).","PeriodicalId":375577,"journal":{"name":"2020 IEEE/ACM Symposium on Edge Computing (SEC)","volume":"47 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Poster: Exploiting Data Heterogeneity for Performance and Reliability in Federated Learning\",\"authors\":\"Yuanli Wang, Dhruv Kumar, A. Chandra\",\"doi\":\"10.1109/SEC50012.2020.00023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated Learning [1] enables distributed devices to learn a shared machine learning model together, without uploading their private training data. It has received significant attention recently and has been used in mobile applications such as search suggestion [2] and object detection [3]. Federated Learning is different from distributed machine learning due to the following reasons: 1) System heterogeneity: federated learning is usually performed on devices having highly dynamic and heterogeneous network, compute, and power availability. 2) Data heterogeneity (or statistical heterogeneity): data is produced by different users on different devices, and therefore may have different statistical distribution (non-IID).\",\"PeriodicalId\":375577,\"journal\":{\"name\":\"2020 IEEE/ACM Symposium on Edge Computing (SEC)\",\"volume\":\"47 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/ACM Symposium on Edge Computing (SEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEC50012.2020.00023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC50012.2020.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Poster: Exploiting Data Heterogeneity for Performance and Reliability in Federated Learning
Federated Learning [1] enables distributed devices to learn a shared machine learning model together, without uploading their private training data. It has received significant attention recently and has been used in mobile applications such as search suggestion [2] and object detection [3]. Federated Learning is different from distributed machine learning due to the following reasons: 1) System heterogeneity: federated learning is usually performed on devices having highly dynamic and heterogeneous network, compute, and power availability. 2) Data heterogeneity (or statistical heterogeneity): data is produced by different users on different devices, and therefore may have different statistical distribution (non-IID).