{"title":"使用数据分析预测败血症患者的住院死亡率","authors":"Yazan Alnsour, R. Hadidi, N. Singh","doi":"10.4018/IJHISI.2019070104","DOIUrl":null,"url":null,"abstract":"Predictive analytics can be used to anticipate the risks associated with some patients, and prediction models can be employed to alert physicians and allow timely proactive interventions. Recently, health care providers have been using different types of tools with prediction capabilities. Sepsis is one of the leading causes of in-hospital death in the United States and worldwide. In this study, the authors used a large medical dataset to develop and present a model that predicts in-hospital mortality among Sepsis patients. The predictive model was developed using a dataset of more than one million records of hospitalized patients. The independent predictors of in-hospital mortality were identified using the chi-square automatic interaction detector. The authors found that adding hospital attributes to the predictive model increased the accuracy from 82.08% to 85.3% and the area under the curve from 0.69 to 0.84, which is favorable compared to using only patients' attributes. The authors discuss the practical and research contributions of using a predictive model that incorporates both patient and hospital attributes in identifying high-risk patients.","PeriodicalId":101861,"journal":{"name":"Int. J. Heal. Inf. Syst. Informatics","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using Data Analytics to Predict Hospital Mortality in Sepsis Patients\",\"authors\":\"Yazan Alnsour, R. Hadidi, N. Singh\",\"doi\":\"10.4018/IJHISI.2019070104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predictive analytics can be used to anticipate the risks associated with some patients, and prediction models can be employed to alert physicians and allow timely proactive interventions. Recently, health care providers have been using different types of tools with prediction capabilities. Sepsis is one of the leading causes of in-hospital death in the United States and worldwide. In this study, the authors used a large medical dataset to develop and present a model that predicts in-hospital mortality among Sepsis patients. The predictive model was developed using a dataset of more than one million records of hospitalized patients. The independent predictors of in-hospital mortality were identified using the chi-square automatic interaction detector. The authors found that adding hospital attributes to the predictive model increased the accuracy from 82.08% to 85.3% and the area under the curve from 0.69 to 0.84, which is favorable compared to using only patients' attributes. The authors discuss the practical and research contributions of using a predictive model that incorporates both patient and hospital attributes in identifying high-risk patients.\",\"PeriodicalId\":101861,\"journal\":{\"name\":\"Int. J. Heal. Inf. Syst. Informatics\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Heal. Inf. Syst. Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJHISI.2019070104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Heal. Inf. Syst. Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJHISI.2019070104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using Data Analytics to Predict Hospital Mortality in Sepsis Patients
Predictive analytics can be used to anticipate the risks associated with some patients, and prediction models can be employed to alert physicians and allow timely proactive interventions. Recently, health care providers have been using different types of tools with prediction capabilities. Sepsis is one of the leading causes of in-hospital death in the United States and worldwide. In this study, the authors used a large medical dataset to develop and present a model that predicts in-hospital mortality among Sepsis patients. The predictive model was developed using a dataset of more than one million records of hospitalized patients. The independent predictors of in-hospital mortality were identified using the chi-square automatic interaction detector. The authors found that adding hospital attributes to the predictive model increased the accuracy from 82.08% to 85.3% and the area under the curve from 0.69 to 0.84, which is favorable compared to using only patients' attributes. The authors discuss the practical and research contributions of using a predictive model that incorporates both patient and hospital attributes in identifying high-risk patients.