Luenberger, Kalman和无传感器感应电机控制的神经网络观测器

M. Cuibus, V. Bostan, S. Ambrosii, C. Ilas, R. Magureanu
{"title":"Luenberger, Kalman和无传感器感应电机控制的神经网络观测器","authors":"M. Cuibus, V. Bostan, S. Ambrosii, C. Ilas, R. Magureanu","doi":"10.1109/IPEMC.2000.883018","DOIUrl":null,"url":null,"abstract":"This paper presents a comparison between the sensorless vector control schemes of the induction motor using the Luenberger observer, the Kalman filter and a neural network observer. The first two methods have been implemented on a digital signal processor (DSP). Different possibilities for reducing the complexity of their implementation are discussed. This is of particular relevance for industrial applications based on DSP microcontrollers. The performance for the third method is appreciated by simulation tests.","PeriodicalId":373820,"journal":{"name":"Proceedings IPEMC 2000. Third International Power Electronics and Motion Control Conference (IEEE Cat. No.00EX435)","volume":"416 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Luenberger, Kalman and neural network observers for sensorless induction motor control\",\"authors\":\"M. Cuibus, V. Bostan, S. Ambrosii, C. Ilas, R. Magureanu\",\"doi\":\"10.1109/IPEMC.2000.883018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a comparison between the sensorless vector control schemes of the induction motor using the Luenberger observer, the Kalman filter and a neural network observer. The first two methods have been implemented on a digital signal processor (DSP). Different possibilities for reducing the complexity of their implementation are discussed. This is of particular relevance for industrial applications based on DSP microcontrollers. The performance for the third method is appreciated by simulation tests.\",\"PeriodicalId\":373820,\"journal\":{\"name\":\"Proceedings IPEMC 2000. Third International Power Electronics and Motion Control Conference (IEEE Cat. No.00EX435)\",\"volume\":\"416 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IPEMC 2000. Third International Power Electronics and Motion Control Conference (IEEE Cat. No.00EX435)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPEMC.2000.883018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IPEMC 2000. Third International Power Electronics and Motion Control Conference (IEEE Cat. No.00EX435)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPEMC.2000.883018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

本文比较了采用Luenberger观测器、卡尔曼滤波器和神经网络观测器的感应电机无传感器矢量控制方案。前两种方法已在数字信号处理器(DSP)上实现。讨论了降低其实现复杂性的不同可能性。这对于基于DSP微控制器的工业应用是特别相关的。通过仿真试验验证了第三种方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Luenberger, Kalman and neural network observers for sensorless induction motor control
This paper presents a comparison between the sensorless vector control schemes of the induction motor using the Luenberger observer, the Kalman filter and a neural network observer. The first two methods have been implemented on a digital signal processor (DSP). Different possibilities for reducing the complexity of their implementation are discussed. This is of particular relevance for industrial applications based on DSP microcontrollers. The performance for the third method is appreciated by simulation tests.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信