使用分布式编码生成非线性类边界

ACM-SE 33 Pub Date : 1995-03-17 DOI:10.1145/1122018.1122064
S. Narayan
{"title":"使用分布式编码生成非线性类边界","authors":"S. Narayan","doi":"10.1145/1122018.1122064","DOIUrl":null,"url":null,"abstract":"Multi-layer Perceptron (MLP) networks function as hyperplane classifiers when applied to classification problems. Therefore, MLP networks can be inefficient when applied to problems in which class boundaries are inadequately modeled by hyperplanes. Attempts to remedy this problem typically necessitate the introduction of a new neural network model in which alternative node connection functions are used to allow the formation of nonlinear class boundaries. In this paper we demonstrate the use of a biologically motivated data representation scheme which, while working within the constraints of the MLP model, permits the development of nonlinear class boundaries. The enhancements afforded by the data representation scheme are demonstrated and analyzed in the context of a classification problem.","PeriodicalId":349974,"journal":{"name":"ACM-SE 33","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating nonlinear class boundaries using distributed encodings\",\"authors\":\"S. Narayan\",\"doi\":\"10.1145/1122018.1122064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-layer Perceptron (MLP) networks function as hyperplane classifiers when applied to classification problems. Therefore, MLP networks can be inefficient when applied to problems in which class boundaries are inadequately modeled by hyperplanes. Attempts to remedy this problem typically necessitate the introduction of a new neural network model in which alternative node connection functions are used to allow the formation of nonlinear class boundaries. In this paper we demonstrate the use of a biologically motivated data representation scheme which, while working within the constraints of the MLP model, permits the development of nonlinear class boundaries. The enhancements afforded by the data representation scheme are demonstrated and analyzed in the context of a classification problem.\",\"PeriodicalId\":349974,\"journal\":{\"name\":\"ACM-SE 33\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM-SE 33\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1122018.1122064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM-SE 33","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1122018.1122064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多层感知器(MLP)网络作为超平面分类器应用于分类问题。因此,当将MLP网络应用于类边界未被超平面充分建模的问题时,它可能是低效的。试图解决这个问题通常需要引入一种新的神经网络模型,其中使用替代节点连接函数来允许非线性类边界的形成。在本文中,我们演示了生物动机数据表示方案的使用,该方案在MLP模型的约束下工作,允许非线性类边界的发展。在一个分类问题的背景下,对数据表示方案所提供的增强进行了演示和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating nonlinear class boundaries using distributed encodings
Multi-layer Perceptron (MLP) networks function as hyperplane classifiers when applied to classification problems. Therefore, MLP networks can be inefficient when applied to problems in which class boundaries are inadequately modeled by hyperplanes. Attempts to remedy this problem typically necessitate the introduction of a new neural network model in which alternative node connection functions are used to allow the formation of nonlinear class boundaries. In this paper we demonstrate the use of a biologically motivated data representation scheme which, while working within the constraints of the MLP model, permits the development of nonlinear class boundaries. The enhancements afforded by the data representation scheme are demonstrated and analyzed in the context of a classification problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信