基于重症监护病房患者综合特征的死亡率预测

Jagan Moahan Reddy Danda, Kumar Priyansh, H. Shahriar, Hisham M. Haddad, A. Cuzzocrea, Nazmus Sakib
{"title":"基于重症监护病房患者综合特征的死亡率预测","authors":"Jagan Moahan Reddy Danda, Kumar Priyansh, H. Shahriar, Hisham M. Haddad, A. Cuzzocrea, Nazmus Sakib","doi":"10.1109/COMPSAC54236.2022.00222","DOIUrl":null,"url":null,"abstract":"Predictive analytics is gaining momentum in health-care since the adoption of electronic health record (EHR) system in hospitals. In particular, machine learning models are built using the critical care EHR data and the information provided during the ICU admissions to predict the mortality of patients admitted in ICU. As per the MIMIC-IV dataset, the survival rate of patients admitted in ICU is found to be 89.76%. This paper proposes a hybrid prediction technique that uses Random Forest and XGBoost for predicting the mortality rate. The proposed techniques performed well in predicting mortality rate despite the class imbalance problem of the dataset. The experiments conducted on MIMIC-IV dataset yields prediction accuracy of 89.72%.","PeriodicalId":330838,"journal":{"name":"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predicting Mortality Rate based on Comprehensive Features of Intensive Care Unit Patients\",\"authors\":\"Jagan Moahan Reddy Danda, Kumar Priyansh, H. Shahriar, Hisham M. Haddad, A. Cuzzocrea, Nazmus Sakib\",\"doi\":\"10.1109/COMPSAC54236.2022.00222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predictive analytics is gaining momentum in health-care since the adoption of electronic health record (EHR) system in hospitals. In particular, machine learning models are built using the critical care EHR data and the information provided during the ICU admissions to predict the mortality of patients admitted in ICU. As per the MIMIC-IV dataset, the survival rate of patients admitted in ICU is found to be 89.76%. This paper proposes a hybrid prediction technique that uses Random Forest and XGBoost for predicting the mortality rate. The proposed techniques performed well in predicting mortality rate despite the class imbalance problem of the dataset. The experiments conducted on MIMIC-IV dataset yields prediction accuracy of 89.72%.\",\"PeriodicalId\":330838,\"journal\":{\"name\":\"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPSAC54236.2022.00222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPSAC54236.2022.00222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自从医院采用电子健康记录(EHR)系统以来,预测分析在医疗保健领域的势头日益强劲。特别是,使用重症监护EHR数据和ICU入院期间提供的信息建立机器学习模型,以预测ICU入院患者的死亡率。根据MIMIC-IV数据集,ICU住院患者的生存率为89.76%。本文提出了一种使用随机森林和XGBoost的混合预测技术来预测死亡率。尽管数据集存在类别不平衡问题,但所提出的技术在预测死亡率方面表现良好。在MIMIC-IV数据集上进行的实验,预测准确率达到89.72%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Mortality Rate based on Comprehensive Features of Intensive Care Unit Patients
Predictive analytics is gaining momentum in health-care since the adoption of electronic health record (EHR) system in hospitals. In particular, machine learning models are built using the critical care EHR data and the information provided during the ICU admissions to predict the mortality of patients admitted in ICU. As per the MIMIC-IV dataset, the survival rate of patients admitted in ICU is found to be 89.76%. This paper proposes a hybrid prediction technique that uses Random Forest and XGBoost for predicting the mortality rate. The proposed techniques performed well in predicting mortality rate despite the class imbalance problem of the dataset. The experiments conducted on MIMIC-IV dataset yields prediction accuracy of 89.72%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信