用于将硬件加速器紧密耦合集成到共享内存多核集群中的合成友好技术

Francesco Conti, A. Marongiu, L. Benini
{"title":"用于将硬件加速器紧密耦合集成到共享内存多核集群中的合成友好技术","authors":"Francesco Conti, A. Marongiu, L. Benini","doi":"10.1109/CODES-ISSS.2013.6658992","DOIUrl":null,"url":null,"abstract":"Several many-core designs tackle scalability issues by leveraging tightly-coupled clusters as building blocks, where low-latency, high-bandwidth interconnection between a small/medium number of cores and L1 memory achieves high performance/watt. Tight coupling of hardware accelerators into these multicore clusters constitutes a promising approach to further improve performance/area/watt. However, accelerators are often clocked at a lower frequency than processor clusters for energy efficiency reasons. In this paper, we propose a technique to integrate shared-memory accelerators within the tightly-coupled clusters of the STMicroelectronics STHORM architecture. Our methodology significantly relaxes timing constraints for tightly-coupled accelerators, while optimizing data bandwidth. In addition, our technique allows to operate the accelerator at an integer submultiple of the cluster frequency. Experimental results show that the proposed approach allows to recover up to 84% of the slow-down implied by reduced accelerator speed.","PeriodicalId":163484,"journal":{"name":"2013 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Synthesis-friendly techniques for tightly-coupled integration of hardware accelerators into shared-memory multi-core clusters\",\"authors\":\"Francesco Conti, A. Marongiu, L. Benini\",\"doi\":\"10.1109/CODES-ISSS.2013.6658992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several many-core designs tackle scalability issues by leveraging tightly-coupled clusters as building blocks, where low-latency, high-bandwidth interconnection between a small/medium number of cores and L1 memory achieves high performance/watt. Tight coupling of hardware accelerators into these multicore clusters constitutes a promising approach to further improve performance/area/watt. However, accelerators are often clocked at a lower frequency than processor clusters for energy efficiency reasons. In this paper, we propose a technique to integrate shared-memory accelerators within the tightly-coupled clusters of the STMicroelectronics STHORM architecture. Our methodology significantly relaxes timing constraints for tightly-coupled accelerators, while optimizing data bandwidth. In addition, our technique allows to operate the accelerator at an integer submultiple of the cluster frequency. Experimental results show that the proposed approach allows to recover up to 84% of the slow-down implied by reduced accelerator speed.\",\"PeriodicalId\":163484,\"journal\":{\"name\":\"2013 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CODES-ISSS.2013.6658992\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CODES-ISSS.2013.6658992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

一些多核设计通过利用紧密耦合的集群作为构建块来解决可伸缩性问题,在这些构建块中,少量/中等数量的核心和L1内存之间的低延迟、高带宽互连实现了高性能/瓦特。硬件加速器与这些多核集群的紧密耦合构成了进一步提高性能/面积/瓦特的有希望的方法。但是,由于能效原因,加速器的时钟频率通常低于处理器集群。在本文中,我们提出了一种将共享内存加速器集成到意法半导体STHORM架构的紧密耦合集群中的技术。我们的方法大大放松了紧耦合加速器的时间限制,同时优化了数据带宽。此外,我们的技术允许以群集频率的整数次倍数操作加速器。实验结果表明,该方法可以恢复高达84%的由降低加速器速度所隐含的慢速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis-friendly techniques for tightly-coupled integration of hardware accelerators into shared-memory multi-core clusters
Several many-core designs tackle scalability issues by leveraging tightly-coupled clusters as building blocks, where low-latency, high-bandwidth interconnection between a small/medium number of cores and L1 memory achieves high performance/watt. Tight coupling of hardware accelerators into these multicore clusters constitutes a promising approach to further improve performance/area/watt. However, accelerators are often clocked at a lower frequency than processor clusters for energy efficiency reasons. In this paper, we propose a technique to integrate shared-memory accelerators within the tightly-coupled clusters of the STMicroelectronics STHORM architecture. Our methodology significantly relaxes timing constraints for tightly-coupled accelerators, while optimizing data bandwidth. In addition, our technique allows to operate the accelerator at an integer submultiple of the cluster frequency. Experimental results show that the proposed approach allows to recover up to 84% of the slow-down implied by reduced accelerator speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信