基于fpga的加速器快速多目标算法设计协同探索

Kumud Nepal, O. Ulusel, R. I. Bahar, S. Reda
{"title":"基于fpga的加速器快速多目标算法设计协同探索","authors":"Kumud Nepal, O. Ulusel, R. I. Bahar, S. Reda","doi":"10.1109/FCCM.2012.21","DOIUrl":null,"url":null,"abstract":"The reconfigurability of Field Programmable Gate Arrays (FPGAs) makes them an attractive platform for accelerating algorithms. Accelerating a particular algorithm is a challenging task as the large number of possible algorithmic and hardware design parameters lead to different accelerator variant implementations, each with its own metrics such as performance, area, power, and arithmetic accuracy characteristics. To identify these parameters that optimize the accelerator for certain metrics, we propose techniques for fast design space exploration and non-linear multi-objective optimization (e.g., minimize power under arithmetic inaccuracy bounds). Our methodology samples a small part of the design space and uses measurements from the sampled implementations to train mathematical models for the different metrics. To automate and improve the model generation process, we propose the use of L1-regularized least squares regression techniques. To demonstrate the effectiveness of our approach, we implement a high-throughput real-time accelerator for image debluring. We demonstrate the accuracy (e.g., within 8% for power modeling) of our modeling techniques and their ability to identify the optimal accelerator designs with large speed-ups (340×) in comparison to brute-force enumeration.","PeriodicalId":226197,"journal":{"name":"2012 IEEE 20th International Symposium on Field-Programmable Custom Computing Machines","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Fast Multi-Objective Algorithmic Design Co-Exploration for FPGA-based Accelerators\",\"authors\":\"Kumud Nepal, O. Ulusel, R. I. Bahar, S. Reda\",\"doi\":\"10.1109/FCCM.2012.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reconfigurability of Field Programmable Gate Arrays (FPGAs) makes them an attractive platform for accelerating algorithms. Accelerating a particular algorithm is a challenging task as the large number of possible algorithmic and hardware design parameters lead to different accelerator variant implementations, each with its own metrics such as performance, area, power, and arithmetic accuracy characteristics. To identify these parameters that optimize the accelerator for certain metrics, we propose techniques for fast design space exploration and non-linear multi-objective optimization (e.g., minimize power under arithmetic inaccuracy bounds). Our methodology samples a small part of the design space and uses measurements from the sampled implementations to train mathematical models for the different metrics. To automate and improve the model generation process, we propose the use of L1-regularized least squares regression techniques. To demonstrate the effectiveness of our approach, we implement a high-throughput real-time accelerator for image debluring. We demonstrate the accuracy (e.g., within 8% for power modeling) of our modeling techniques and their ability to identify the optimal accelerator designs with large speed-ups (340×) in comparison to brute-force enumeration.\",\"PeriodicalId\":226197,\"journal\":{\"name\":\"2012 IEEE 20th International Symposium on Field-Programmable Custom Computing Machines\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 20th International Symposium on Field-Programmable Custom Computing Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCCM.2012.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 20th International Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2012.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

现场可编程门阵列(fpga)的可重构性使其成为一个有吸引力的加速算法平台。加速特定算法是一项具有挑战性的任务,因为大量可能的算法和硬件设计参数导致不同的加速器变体实现,每种都有自己的指标,如性能、面积、功率和算术精度特征。为了确定这些参数,优化加速器的某些指标,我们提出了快速设计空间探索和非线性多目标优化技术(例如,在算术不精度界限下最小化功率)。我们的方法对设计空间的一小部分进行采样,并使用来自采样实现的度量来训练不同度量的数学模型。为了自动化和改进模型生成过程,我们建议使用l1正则化最小二乘回归技术。为了证明我们方法的有效性,我们实现了一个用于图像去模糊的高通量实时加速器。我们展示了我们的建模技术的准确性(例如,功率建模在8%以内),以及与暴力枚举相比,它们能够识别具有大加速(340倍)的最佳加速器设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Multi-Objective Algorithmic Design Co-Exploration for FPGA-based Accelerators
The reconfigurability of Field Programmable Gate Arrays (FPGAs) makes them an attractive platform for accelerating algorithms. Accelerating a particular algorithm is a challenging task as the large number of possible algorithmic and hardware design parameters lead to different accelerator variant implementations, each with its own metrics such as performance, area, power, and arithmetic accuracy characteristics. To identify these parameters that optimize the accelerator for certain metrics, we propose techniques for fast design space exploration and non-linear multi-objective optimization (e.g., minimize power under arithmetic inaccuracy bounds). Our methodology samples a small part of the design space and uses measurements from the sampled implementations to train mathematical models for the different metrics. To automate and improve the model generation process, we propose the use of L1-regularized least squares regression techniques. To demonstrate the effectiveness of our approach, we implement a high-throughput real-time accelerator for image debluring. We demonstrate the accuracy (e.g., within 8% for power modeling) of our modeling techniques and their ability to identify the optimal accelerator designs with large speed-ups (340×) in comparison to brute-force enumeration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信