{"title":"基于四元数主成分分析的多光谱掌纹识别","authors":"Xingpeng Xu, Zhenhua Guo","doi":"10.1109/ETCHB.2010.5559287","DOIUrl":null,"url":null,"abstract":"Abstract-Palmprint has been widely used in personal recognition. To improve the performance of the existing palmprint recognition system, multispectral palmprint recognition system has been proposed and designed. This paper presents a method of representing the multispectral palmprint images by quaternion and extracting features using the quaternion principal components analysis (QPCA) to achieve better performance in recognition. A data acquisition device is employed to capture the palmprint images under Red, Green, Blue and near-infrared (NIR) illuminations in less than 1s. QPCA is used to extract features of multispectral palmprint images. The dissimilarity between two palmprint images is measured by the Euclidean distance. The experiment shows that a higher recognition rate can be achieved when we use QPCA. Given 3000 testing samples from 500 palms, the best GAR is 98.13%.","PeriodicalId":174704,"journal":{"name":"2010 International Workshop on Emerging Techniques and Challenges for Hand-Based Biometrics","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Multispectral Palmprint Recognition Using Quaternion Principal Component Analysis\",\"authors\":\"Xingpeng Xu, Zhenhua Guo\",\"doi\":\"10.1109/ETCHB.2010.5559287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract-Palmprint has been widely used in personal recognition. To improve the performance of the existing palmprint recognition system, multispectral palmprint recognition system has been proposed and designed. This paper presents a method of representing the multispectral palmprint images by quaternion and extracting features using the quaternion principal components analysis (QPCA) to achieve better performance in recognition. A data acquisition device is employed to capture the palmprint images under Red, Green, Blue and near-infrared (NIR) illuminations in less than 1s. QPCA is used to extract features of multispectral palmprint images. The dissimilarity between two palmprint images is measured by the Euclidean distance. The experiment shows that a higher recognition rate can be achieved when we use QPCA. Given 3000 testing samples from 500 palms, the best GAR is 98.13%.\",\"PeriodicalId\":174704,\"journal\":{\"name\":\"2010 International Workshop on Emerging Techniques and Challenges for Hand-Based Biometrics\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Workshop on Emerging Techniques and Challenges for Hand-Based Biometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETCHB.2010.5559287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Workshop on Emerging Techniques and Challenges for Hand-Based Biometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETCHB.2010.5559287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multispectral Palmprint Recognition Using Quaternion Principal Component Analysis
Abstract-Palmprint has been widely used in personal recognition. To improve the performance of the existing palmprint recognition system, multispectral palmprint recognition system has been proposed and designed. This paper presents a method of representing the multispectral palmprint images by quaternion and extracting features using the quaternion principal components analysis (QPCA) to achieve better performance in recognition. A data acquisition device is employed to capture the palmprint images under Red, Green, Blue and near-infrared (NIR) illuminations in less than 1s. QPCA is used to extract features of multispectral palmprint images. The dissimilarity between two palmprint images is measured by the Euclidean distance. The experiment shows that a higher recognition rate can be achieved when we use QPCA. Given 3000 testing samples from 500 palms, the best GAR is 98.13%.